2024届福州仓山区六校联考八上数学期末达标检测模拟试题含解析_第1页
2024届福州仓山区六校联考八上数学期末达标检测模拟试题含解析_第2页
2024届福州仓山区六校联考八上数学期末达标检测模拟试题含解析_第3页
2024届福州仓山区六校联考八上数学期末达标检测模拟试题含解析_第4页
2024届福州仓山区六校联考八上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福州仓山区六校联考八上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学计数法表示为A.6.5×107 B.6.5×10-6 C.6.5×10-8 D.6.5×10-72.如图,图中直角三角形共有A.1个 B.2个 C.3个 D.4个3.在实数中,,,是无理数的是()A. B. C. D.4.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的()A. B. C. D.5.下列语句中,是命题的是()A.延长线段到 B.垂线段最短C.画 D.等角的余角相等吗?6.两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从地出发到地,乙车比甲车早到30分钟,设甲车平均速度为千米/小时,则根据题意所列方程是()A. B.C. D.7.如图,在平面直角坐标系中,为坐标原点,点在轴正半轴上,点,,……在射线上,点,,……在射线上,,,,……均为等边三角形,依此类推,若,则点的横坐标是()A. B. C. D.8.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.99.如图,,于,于,,则的值为()A. B. C. D.10.计算,结果用科学记数法表示正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=________.12.如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为__________.13.化简的结果是__________.14.已知,,,为正整数,则_________.15.如图,△ABC中,AB=AC=15cm,AB的垂直平分线交AB于D,交AC于E,若BC=8cm,则△EBC的周长为___________cm.16.如图,AB=AC,BD⊥AC,∠CBD=α,则∠A=_____(用含α的式子表示).17.若一个正多边形的每个外角都等于36°,则它的内角和是_____.18.一件工作,甲独做需小时完成,乙独做需小时完成,则甲、乙两人合作需的小时数是______.三、解答题(共66分)19.(10分)已知:如图,和均为等腰直角三角形,,连结,,且、、三点在一直线上,,.(1)求证:;(2)求线段的长.20.(6分)老师在黑板上写出三个算式:,,,王华接着又写了两个具有同样规律的算式:,,…(1)请你再写出一个(不同于上面算式)具有上述规律的算式;(2)用文字表述上述算式的规律;(3)证明这个规律的正确性.21.(6分)某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?22.(8分)计算或因式分解:(1)计算:(a2-4)÷;(2)因式分解:a(n-1)2-2a(n-1)+a.23.(8分)(1)计算:(2)若,求的值.24.(8分)如图1,在平面直角坐标系中,点A(a,1)点B(b,1)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=1.

(1)判断△ABC的形状并说明理由;

(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM与AN的位置关系,并证明你的结论.

(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.

25.(10分)今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.(1)用含a的代数式表示第一批茶叶的毛利润;(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)26.(10分)某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.(1)求一次函数的表达式.(2)若该商户每天获得利润为元,试求出销售单价的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:.

故答案为D.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、C【分析】有一个角是直角的三角形是直角三角形.【题目详解】解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.【题目点拨】本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.3、A【解题分析】无限不循环小数是无理数,根据定义判断即可.【题目详解】是无理数;是有理数,不是无理数;=3是有理数,不是无理数;=2是有理数,不是无理数,故选:A.【题目点拨】此题考查无理数定义,熟记定义并掌握无理数与有理数的区别即可正确解答.4、A【分析】根据轴对称图形的定义即可判断.【题目详解】A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:A.【题目点拨】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.5、B【分析】根据命题的定义解答即可.【题目详解】解:A、延长线段AB到C,不是命题;

B、垂线段最短,是命题;

C、画,不是命题;

D、等角的余角相等吗?不是命题;

故选:B.【题目点拨】本题考查了命题与定理:判断一件事情的语句叫命题.6、B【分析】设甲车平均速度为5x千米/小时,则乙车平均速度为6x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.【题目详解】解:设甲车平均速度为5x千米/小时,则乙车平均速度为6x千米/小时,根据题意得.故选B.【题目点拨】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.7、B【分析】根据等边三角形的性质和以及外角的性质,可求得,可求得,由勾股定理得,再结合的直角三角形的性质,可得点横坐标为,利用中位线性质,以此类推,可得的横坐标为,的横坐标为……,所以的横坐标为,即得.【题目详解】,为等边三角形,由三角形外角的性质,,,由勾股定理得,的纵坐标为,由的直角三角形的性质,可得横坐标为,以此类推的横坐标为,的横坐标为……,所以的横坐标为,横坐标为.故选:B.【题目点拨】考查了图形的规律,等边三角形的性质,的直角三角形的性质,外角性质,勾股定理,熟练掌握这些性质内容,综合应用能力很关键,以及类比推理的思想比较重要.8、B【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【题目详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=1,∴这个多边形的边数为1.故选B.【题目点拨】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.9、B【分析】根据∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,求得∠ACD=∠CBE,利用角角边定理可证得△ACD≌△CBE,得出CE=AD,BE=CD=CE-DE,将已知数值代入求得BE的长,从而即可得出答案.【题目详解】解:∵BE⊥CE,AD⊥CE于D,

∴∠ADC=∠CEB=90°∴∠CBE+∠BCE=90°∵∠ACB=90°,∴∠ACD+∠BCE=90°,

∴∠ACD=∠CBE,

在△ACD与△CBE中,∴△ACD≌△CBE(AAS).

∴CE=AD=5cm,BE=DC

∴DC=CE-DE=5-3=2cm

∴BE=2cm.∴BE:CE=2:5∴BE:CE的值为故选:B【题目点拨】此题考查学生对等腰直角三角形和全等三角形的判定与性质的理解和掌握,关键是利用角角边定理可证得△ACD≌△CBE.10、B【分析】把2与5相乘、10-4与10-2相乘,后者根据同底数幂的乘法法则得到10-4-2,然后写成a×10n(1≤a<10,n为整数)的形式即可.【题目详解】===.故选:B.【题目点拨】考查了同底数幂的乘法,解题关键利用了:am•an=am+n(其中a≠0,m、n为整数)进行计算.二、填空题(每小题3分,共24分)11、60°【分析】本题需先证出△BOC≌△AOD,求出∠C,再求出∠DAC,最后根据三角形的内角和定理即可求出答案.【题目详解】在△BOC和△AOD中,∵OA=OB,∠O=∠O,OC=OD,∴△BOC≌△AOD,∴∠C=∠D=35°.∵∠DAC=∠O+∠D=50°+35°=85°,∴∠AEC=180°﹣∠DAC﹣∠C=180°﹣85°﹣35°=60°.故答案为60°.【题目点拨】本题主要考查了全等三角形的判定和性质,在解题时要注意和三角形的内角和定理相结合是本题的关键.12、【分析】由三角形面积公式可求BF的长,从而根据勾股定理可求AF的长,根据线段的和差可求CF的长,在Rt△CEF中,根据勾股定理可求DE的长,即可求△ADE的面积.【题目详解】解:∵四边形ABCD是矩形,

∴AB=CD=6cm,BC=AD,,∴BF=8cm,在Rt△ABF中,,根据折叠的性质,AD=AF=10cm,DE=EF,∴BC=10cm,

∴FC=BC-BF=2cm,在Rt△EFC中,EF2=EC2+CF2,

∴DE2=(6-DE)2+4,,,故答案为:.【题目点拨】本题考查折叠的性质,矩形的性质,勾股定理.理解折叠前后对应线段相等是解决此题的关键.13、4【分析】根据二次根式的性质直接化简即可.【题目详解】.故答案为:4.【题目点拨】此题主要考查了运用二次根式的性质进行化简,注意:.14、【分析】逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【题目详解】解:,,,为正整数,,.故答案为:.【题目点拨】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.15、1【分析】根据线段垂直平分线的性质得出AE=BE,求出△EBC的周长=BC+BE+EC=BC+AC,代入求出即可.【题目详解】解:∵DE是AB的垂直平分线,∴AE=BE,∵AB=AC=15cm,BC=8cm,∴△EBC的周长=BC+BE+EC=BC+AE+CE=BC+AC=8+15=1cm.故答案为:1.【题目点拨】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16、2α.【分析】根据已知可表示得两底角的度数,再根据三角形内角和定理不难求得∠A的度数;【题目详解】解:∵BD⊥AC,∠CBD=α,∴∠C=(90﹣α)°,∵AB=AC,∴∠ABC=∠C=(90﹣α)°,∴∠ABD=90﹣α﹣α=(90﹣2α)°∴∠A=90°﹣(90﹣2α)°=2α;故答案为:2α.【题目点拨】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.17、1440°【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【题目详解】解:∵一个正多1440°边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【题目点拨】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n-2)×180°.18、【分析】设总工作量为1,根据甲独做a小时完成,乙独做b小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.【题目详解】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:∴甲、乙合做全部工作需:故填:.【题目点拨】此题考查了列代数式,解决问题的关键是读懂题意,根据关键描述语,找到所求的量的等量关系,当总工作量未知时,可设总工作量为1.三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)根据等式的基本性质可得∠DAB=∠EAC,然后根据等腰直角三角形的性质可得DA=EA,BA=CA,再利用SAS即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE,从而求出EC和DC,再根据全等三角形的性质即可求出DB,∠ADB=∠AEC,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【题目详解】证明:(1)∵∴∠DAE-∠BAE=∠BAC-∠BAE∴∠DAB=∠EAC∵和均为等腰直角三角形∴DA=EA,BA=CA在△ADB和△AEC中∴△ADB≌△AEC(2)∵是等腰直角三角形,∴DE=,∵∴EC=,∴DC=DE+EC=3∵△ADB≌△AEC∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE+∠BDC,∠AEC=∠ADE+∠DAE=∠ADE+90°∴∠BDC=90°在Rt△BDC中,【题目点拨】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.20、(1)152-92=8×18,132-92=8×11;(2)任意两个奇数的平方差是8的倍数;(3)证明见解析.【分析】(1)根据算式的规律可见:左边是两个奇数的平方差,右边是8的倍数;可写出相同规律的算式;

(2)任意两个奇数的平方差是8的倍数;

(3)可设任意两个奇数为:2n+1,2m+1(其中n、m为整数)计算即可.【题目详解】解:(1)通过对老师和王华算式的观察,可以知道,左边是奇数的平方差,右边是8的倍数,

∴152-92=8×18,132-92=8×11,…;

(2)上述规律可用文字描述为:任意两个奇数的平方差等于8的倍数;

(3)证明:设m、n为整数,则任意两个奇数可表示为2m+1和2n+1,

∴(2m+1)2-(2n+1)2=(2m-2n)(2m+2n+2)=4(m-n)(m+n+1),

又∵①当m、n同奇数或同偶数时;m-n一定是偶数,设m-n=2a;

②m、n一奇数一偶数;m+n+1一定是偶数,设m+n+1=2a

∴(2m+1)2-(2n+1)2=8a(m+n+1),

而a(m+n+1)是整数,

∴任意两个奇数的平方差等于8的倍数成立.【题目点拨】本题考查了一个数学规律,即任意两个奇数的平方差等于8的倍数.通过本题的学习可见数字世界的奇妙变换,很有意义.21、农场去年实际生产小麦52.5吨,玉米172.5吨【分析】设农场去年实际生产小麦x吨,玉米y吨,利用去年实际产量为225吨,则x+y=250,再利用小麦超产15%,玉米超产5%,可以得出去年计划生产玉米吨和小麦吨,由去年计划生产玉米和小麦共200吨,可得,进而组成方程组求出答案.【题目详解】设农场去年实际生产小麦x吨,玉米y吨,根据题意可得:,解得:,答:农场去年实际生产小麦52.5吨,玉米172.5吨.【题目点拨】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.22、(1)原式=a2-2a;(2)原式=a(n-2)2.【解题分析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解;(2)首先提取公因式a,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a+2)(a-2)=a(a-2)=a2-2a;(2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2.23、(1)6;(2)x=1,y=1【分析】(1)先算括号,再算乘除,最后算加减;(2)根据绝对值和算术平方根的非负性可得关于x和y的二元一次方程组,解得即可;【题目详解】解:(1)原式==;(2)∵,∴,①+②×2得:,∴x=1,代入②得:y=1,∴方程组的解为,即x=1,y=1.【题目点拨】本题考查了二次根式的混合运算、绝对值和算术平方根的非负性以及解二元一次方程组,解题的关键是掌握运算法则和方程组的解法.24、(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析【分析】(1)由题意可得a=-b,即OA=OB,根据线段垂直平分线的性质可得AC=BC,即△ABC是等腰三角形;(2)延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,根据等腰三角形的性质可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根据角平分线的性质可得PM平分∠CPB,根据三角形的外角的性质可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;

(3)延长GF至点M,使FM=FG,连接CG,CM,AM,由题意可证△AMF≌△DGF,可得AM=DG,由角的数量关系可得∠BCO=∠BDG=∠DBG,即DG=BG,根据“SAS”可证△AMC≌△BGC,可得CM=CG,根据等腰三角形性质可得CF⊥FG.【题目详解】解:(1)∵a2+2ab+b2=1,

∴(a+b)2=1,

∴a=-b,

∴OA=OB,且AB⊥OC,

∴OC是AB的垂直平分线,

∴AC=BC,

∴△ACB是等腰三角形(2)PM∥AN,

理由如下:

如图,延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,

∵OC是AB的垂直平分线,

∴AN=NB,CO⊥AB

∴∠NAB=∠NBA,∠ANO=∠BNO

∴∠PNC=∠CNE,且MH⊥AE,MD⊥BP,

∴MD=MH,

∵∠CAM=∠MAN=∠NAB,

∴AM平分∠CAE,且MG⊥AC,MH⊥AE

∴MG=MH

∴MG=MD,且MG⊥AC,MD⊥BP,

∴PM平分∠BPC

∵∠CAM=∠MAN=∠NAB,∠PNA=∠NAB+∠NBA

∴∠CAN=2∠NAB=∠PNA,

∵∠CPB=∠CAN+∠PNA

∴∠CPB=4∠NAB

∵PM平分∠BAC

∴∠CPM=2∠NAB

∴∠CPM=∠CAN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论