




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉东湖高新区2024届数学八上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在中,点是延长线上一点,,,则等于().A.60° B.80° C.70° D.50°2.如果点P(-2,b)和点Q(a,-3)关于x轴对称,则的值是()A.1 B.-1 C.5 D.-53.式子有意义的条件是()A.x≠2 B.x>﹣2 C.x≥2 D.x>24.如图,在△ABC中,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,则下列结论一定正确的是()A.AD=DC B.AD=BD C.∠DBC=∠A D.∠DBC=∠ABD5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.6.若a=,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H7.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x-2
B.90x-2=60x+2
8.有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积()A.4a2 B.4a2﹣ab C.4a2+ab D.4a2﹣ab﹣2b29.下列各组数中不能作为直角三角形的三边长的是()A.2,3,5 B.3,4,5 C.6,8,10 D.5,12,1310.的平方根是()A.±5 B.5 C.± D.11.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为()A.6 B.12 C.24 D.4812.在二次根式,,,中,最简二次根式有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.若点关于轴的对称点的坐标是,则的值是__________.14.在中,,则的度数是________°.15.=_________;16.一个多边形所有内角都是135°,则这个多边形的边数为_________17.分式,,的最简公分母是_______.18.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.三、解答题(共78分)19.(8分)平面直角坐标系中,三个顶点的坐标为.(1)直接写出关于轴对称的点的坐标:;;;(2)若各顶点的横坐标不变,纵坐标都乘以,请直接写出对应点,,的坐标,并在坐标系中画出.20.(8分)如图,在△ABC中,∠ACB=90°,∠ABC和∠CAB的平分线交于点O,求∠AOB的度数.21.(8分)(1)根据所示的程序,求输出D的化简结果;(2)当x与2、3可构成等腰三角形的三边时,求D的值.22.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与直线相交于点,(1)求直线的函数表达式;(2)求的面积;(3)在轴上是否存在一点,使是等腰三角形.若不存在,请说明理由;若存在,请直接写出点的坐标23.(10分)解答下列各题(1)如图1,已知OA=OB,数轴上的点A所表示的数为m,且|m+n|=2①点A所表示的数m为;②求代数式n2+m﹣9的值.(2)旅客乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数,其图象如图2所示.①当旅客需要购买行李票时,求出y与x之间的函数关系式;②如果张老师携带了42千克行李,她是否要购买行李票?如果购买需买多少行李票?24.(10分)如图,已知直线与直线AC交于点A,与轴交于点B,且直线AC过点和点,连接BD.(1)求直线AC的解析式.(2)求交点A的坐标,并求出的面积.(3)在x轴上是否存在一点P,使得周长最小?若存在,求出点P的坐标;若不存在,请说明理由.25.(12分)如图所示,在△ABC中,AC=10,BC=17,CD=8,AD=1.求:(1)BD的长;(2)△ABC的面积.26.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.
参考答案一、选择题(每题4分,共48分)1、D【分析】利用外角的性质解答即可.【题目详解】∵∠ACD=∠B+∠A,∴∠B=∠ACD-∠A=120°-70°=50°,故选:D.【题目点拨】本题考查外角的性质,属于基础题型.2、A【分析】关于x轴对称,则P、Q横坐标相同,纵坐标互为相反数,即可求解.【题目详解】∵点P(-2,b)和点Q(a,-3)关于x轴对称∴a=-2,b=3∴故选A.【题目点拨】本题考查坐标系中点的对称,熟记口诀“关于谁对称谁不变,另一个变号”是关键.3、D【解题分析】根据二次根式和分式有意义的条件可得x﹣2>0,再解即可.【题目详解】解:由题意得:x﹣2>0,解得:x>2,故选:D.【题目点拨】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.4、C【分析】根据等腰三角形的性质可得,再结合三角形的内角和定理可得.【题目详解】∵以B为圆心,BC长为半径画弧故选:C.【题目点拨】本题考查了等腰三角形的性质(等边对等角)、三角形的内角和定理,熟记等腰三角形的相关性质是解题关键.5、C【解题分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解:根据题意,得.故选C.6、C【解题分析】根据被开方数越大算术平方根越大,可得答案.【题目详解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故选:C.【题目点拨】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<<4是解题关键.7、A【解题分析】未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.【题目详解】顺流所用的时间为:90x+2;逆流所用的时间为:60x-2.所列方程为:90x+2【题目点拨】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.8、B【分析】根据阴影部分面积=大长方形的面积-小长方形的面积,列出算式,再根据整式的混合运算顺序和运算法则计算可得.【题目详解】解:余下的部分的面积为:(2a+b)(2a-b)-b(a-b)
=4a2-b2-ab+b2
=4a2-ab,
故选B.【题目点拨】本题主要考查整式的混合运算,解题的关键是结合图形列出面积的代数式,并熟练掌握整式的混合运算顺序和运算法则.9、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【题目详解】解:A、22+3252,不符合勾股定理的逆定理,故错误;
B、32+42=52,符合勾股定理的逆定理,故正确;
C、62+82=102,符合勾股定理的逆定理,故正确;
D、52+122=132,符合勾股定理的逆定理,故正确.
故选:A.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10、C【解题分析】先求出=5,再根据平方根定义求出即可.【题目详解】∵=5,5的平方根是±∴的平方根是±,故选C.【题目点拨】本题考查了对平方根和算术平方根的应用,主要考查学生对平方根和算术平方根的定义的理解能力和计算能力,难度不大.11、C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【题目详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为,,∴此三角形为直角三角形,,故选C.【题目点拨】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.12、B【分析】根据最简二次根式的概念解答即可.【题目详解】∵,2,不能化简,不能化简.∴,是最简二次根式.故选B.【题目点拨】本题考查了最简二次根式的概念,解题的关键是正确理解最简二次根式的概念.二、填空题(每题4分,共24分)13、-1【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得3=n,m+4=0,解出m、n的值,可得答案.【题目详解】解:∵点关于轴的对称点的坐标是,∴3=n,m+4=0,∴n=3,m=-4,∴m+n=-1.故答案为:-1.【题目点拨】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.14、60【分析】用分别表示出,再根据三角形的内角和为即可算出答案.【题目详解】∵∴∴∴∴故答案为:60【题目点拨】本题考查了三角形的内角和,根据题目中的关系用分别表示出是解题关键.15、-1【分析】因为b-a=-(a-b),所以可以看成是同分母的分式相加减.【题目详解】=【题目点拨】本题考查了分式的加减法,解题的关键是构建出相同的分母进行计算.16、6【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【题目详解】解:∵所有内角都是135°,∴每一个外角的度数是180°-135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形考点:多边形的内角和外角点评:本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.17、11xy1.【分析】取各系数的最小公倍数,各字母的最高次幂.1,3,4的最小公倍数为11,x的最高次幂为1,y的最高次幂为1,则得出最简公分母.【题目详解】解:分母1x,3y1,4xy的最简公分母为11xy1,
故答案为11xy1.【题目点拨】本题考查了最简公分母,关键是掌握最简公分母的定义,分两个部分确定.18、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【题目详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【题目点拨】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.三、解答题(共78分)19、(1)(2);图见解析.【分析】(1)根据点坐标关于y轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以”可得点坐标,再在平面直角坐标系中描出三点,然后顺次连接即可得.【题目详解】(1)在平面直角坐标系中,点坐标关于y轴对称的规律为:横坐标变为相反数,纵坐标不变故答案为:;;;(2)横坐标不变,纵坐标都乘以在平面直角坐标系中,先描出三点,再顺次连接即可得,结果如图所示:【题目点拨】本题考查了点坐标关于y轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.20、135°【解题分析】根据三角形的内角和定理求出∠ABC+∠BAC,再根据角平分线的定义求出∠OAB+∠OBA,然后利用三角形的内角和定理列式计算即可得解.【题目详解】∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°.∵∠CAB与∠CBA的平分线相交于O点,∴∠OAB+∠OBA=12(∠ABC+∠BAC)=12×90°=在△AOB中,∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣45°=135°.【题目点拨】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.21、(1)D=;(2)D=1.【分析】(1)根据运算程序列出算式,先对括号内的分式进行通分相加,把除法转化为乘法,计算乘法即可化简;(2)先求出x的值,然后代入计算,即可得到答案.【题目详解】解:(1)D====;(2)由题意得,x=2或x=1,当x=2时,能使原分式中的分母为0,分式无意义,∴当x=1时,则D=;【题目点拨】此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22、(1);(2)12;(3)存在,【分析】(1)将点A、B的坐标代入解析式,即可得到答案;(2)先求出交点C的坐标,利用底乘高列式计算即可得到答案;(3)先求出OC的长,分三种情况求出点P的坐标使是等腰三角形.【题目详解】(1)由题意得,解得,直线的函数表达式;(2)解方程组,得,∴点的坐标,∴;(3)存在,,当OP=OC时,点P(10,0),(-10,0),当OC=PC时,点P(12,0),当OP=PC时,点P(),综上,点P的坐标是(10,0)或(-10,0)或(12,0)或()时,是等腰三角形.【题目点拨】此题考查待定系数法求函数解析式,求图象交点坐标,利用等腰三角形的定义求点坐标.23、(1)①﹣;②3或﹣5;(2)①y=x﹣5;②她要购买行李票,需买2元的行李票.【分析】(1)①根据勾股定理可以求得OB的值,再根据OA=OB,即可得到m的值;②根据m的值和|m+n|=2,可以得到n的值,从而可以得到n2+m﹣9的值;(2)①根据函数图象利用待定系数法可以得到y与x的函数关系式;②根据①中的函数关系式,将y=0,x=42分别代入计算,即可解答本题.【题目详解】解:(1)①由图1可知,OA=OB,∵OB==,∴OA=,∴点A表示的数m为﹣,故答案为:﹣;②∵|m+n|=2,m=﹣,∴m+n=±2,m=﹣,当m+n=2时,n=2+,则n2+m﹣9=(2+)2+(﹣)﹣9=9+4+(﹣)﹣9=3;当m+n=﹣2时,n=﹣2+,则n2+m﹣9=(﹣2+)2+(﹣)﹣9=9﹣4+(﹣)﹣9=﹣5;由上可得,n2+m﹣9的值是3或﹣5;(2)①当旅客需要购买行李票时,设y与x之间的函数关系式为y=kx+b,代入(60,5),(90,10)得:,解得:,∴当旅客需要购买行李票时,y与x之间的函数关系式是y=x﹣5;②当y=0时,0=x﹣5,得x=30,当x=42时,y=×42﹣5=2,故她要购买行李票,需买2元的行李票.【题目点拨】本题考查勾股定理与无理数、二次根式的混合运算以及一次函数的应用,解答本题的关键是准确识别函数图象,熟练掌握待定系数法.24、(1);(2),;(3)存在点P使周长最小.【分析】(1)设直线AC解析式,代入,,用待定系数法解题即可;(2)将直线与直线AC两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D、E关于轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE的解析式,进而令,解得直线与x轴的交点即可.【题目详解】(1)设直线AC解析式,把,代入中,得,解得,直线AC解析式.(2)联立,解得.,把代入中,得,,,,,,.故答案为:,.(3)作D、E关于轴对称,,周长,是定值,最小时,周长最小,,A、P、B共线时,最小,即最小,连接AE交轴于点P,点P即所求,,D、E关于轴对称,,设直线AE解析式,把,代入中,,解得,,令得,,,即存在点P使周长最小.【题目点拨】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x轴交点等知识,是重要考点,难度较易,掌握相关知识是解题关键.25、(1)BD=15;(2)S△ABC=2.【分析】(1)由AC=10,CD=8,AD=1,利用勾股定理的逆定理可判断∠ACD=90°,在利用勾股定理即可求出BD的长;(2)由三角形的面积公式即可求得.【题目详解】解:(1)在△ABC中,∵AC2=102=100,AD2+CD2=12+82=100,∴AC2=AD2+CD2,∴∠ADC=90°,∵∠BDC=90°,在Rt△BCD中,BD==15;(2)S△ABC=×(1+15)×8=4×21=2.【题目点拨】本题考查勾股定理;勾股定理的逆定理;三角形的面积,综合性较强,难度不大.26、(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△AP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新鲜鸡蛋购销合同
- 2025国际企业建筑工程合同模板
- 2025年北京个体房屋租赁标准合同示例
- 2025年外籍员工劳动合同范本
- 2025城市绿化项目合同协议书模板
- 辅导学生社交能力的有效措施计划
- 职业生涯规划中的自我认知计划
- 提高仓库管理水平优化物流流程计划
- 《2025企业管理指南离职员工合同样本保存策略与规定文档模板》
- 秘书工作的成就感与挑战计划
- 2025年4月自考13887经济学原理中级押题及答案
- 琴行规章制度
- 小学校长在月度教师会议总结发言:教学、管理、成长全回顾
- 公司事故隐患内部报告奖励制度
- 统编历史七年级下册(2024版)第8课-北宋的政治【课件】j
- 新课标(水平三)体育与健康《篮球》大单元教学计划及配套教案(18课时)
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- 创业思维-创造你喜爱的人生智慧树知到期末考试答案章节答案2024年浙江旅游职业学院
- 花卉病虫害防治基本知识PPT精品文档
- 人事考试成绩复查申请表
- 生产经营单位生产安全事故应急预案评审表
评论
0/150
提交评论