




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市盐山县2024届八年级数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC中,AB=AC,BC=5,,于D,EF垂直平分AB,交AC于F,在EF上确定一点P使最小,则这个最小值为()A.3 B.4 C.5 D.62.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A. B. C. D.3.如图:若△ABE≌△ACD,且AB=6,AE=2,则EC的长为()A.2 B.3 C.4 D.64.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC5.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5 B.1 C.1.5 D.26.如果点和点关于轴对称,则,的值为()A., B.,C., D.,7.下列能用平方差公式计算的是().A. B.C. D.8.2014年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:若每月每户居民用水不超过4m3,则按每立方米2元计算;若每月每户居民用水超过4m3,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民用水xm3,水费为y元,则y与x的函数关系式用图象表示正确的是()A. B. C. D.9.若三角形两边长分别是4、5,则周长c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定10.在,,,,中,分式有().A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,在中,按以下步骤作图:第一步:分别以点为圆心,以大于的长为半径画弧,两弧相交于两点;第二步:作直线交于点,连接.(1)是______三角形;(填“等边”、“直角”、“等腰”)(2)若,则的度数为___________.12.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为______.13.如图,已知,,,则__________.14.计算的结果是_____________.15.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是________(只写一个即可,不添加辅助线).16.分解因式___________17.在平面直角坐标系xOy中,二元一次方程ax+by=c的图象如图所示.则当x=3时,y的值为_______.18.分式的值比分式的值大3,则x为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.20.(6分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.21.(6分)老师让同学们化简,两位同学得到的结果不同,请你检查他们的计算过程,指出哪位同学的做法是错误的及错误的步骤,并改正.22.(8分)某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.(1)求甲,乙两木工组单独修理这批桌凳的天数;(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.23.(8分)在正方形网格中,每个小方格都是边长为1的正方形,建立如图所示的平面直角坐标系,的三个顶点都落在小正方形方格的顶点上(1)点A的坐标是,点B的坐标是,点C的坐标是;(2)在图中画出关于y轴对称的;(3)直接写出的面积.24.(8分)某开发公司生产的960件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用为每天80元,乙工厂加工费用为每天120元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.25.(10分)分解因式:4ab2﹣4a2b﹣b1.26.(10分)在中,,,点是线段上一动点(不与,重合).(1)如图1,当点为的中点,过点作交的延长线于点,求证:;(1)连接,作,交于点.若时,如图1.①______;②求证:为等腰三角形;(3)连接CD,∠CDE=30°,在点的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据三角形的面积公式得到AD=6,由EF垂直平分AB,得到点A,B关于执行EF对称,于是得到AD的长度=PB+PD的最小值,即可得到结论.【题目详解】∴AD=6,∵EF垂直平分AB,∴点A,B关于直线EF对称,∴AD的长度=PB+PD的最小值,即PB+PD的最小值为6,故答案选D.【题目点拨】本题考查的知识点是线段垂直平分线的性质及等腰三角形的性质以及轴对称-最短路线问题,解题的关键是熟练的掌握线段垂直平分线的性质及等腰三角形的性质以及轴对称-最短路线问题.2、A【分析】根据科学记数法绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】由科学记数法的表示可知,,故选:A.【题目点拨】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.3、C【分析】根据全等三角形的对应边相等解答即可.【题目详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【题目点拨】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.4、D【解题分析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,
∵AF=AF,∠1=∠2,AD=AB,
∴△ADF≌△ABF,
∴∠ADF=∠ABF,
又∵∠ABF=∠C=90°-∠CBF,
∴∠ADF=∠C,
∴FD∥BC.
故选B.
5、B【分析】过点A作AE⊥BC,得到E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,求出BE=,进而求出DE=-2=,即可求CD.【题目详解】过点A作AE⊥BC.∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=.∵BD=2,∴DE=﹣2=,∴CD=1.故选:B.【题目点拨】此题考查等腰三角形与直角三角形的性质;熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.6、A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数代入计算可解答.【题目详解】解:由题意得:,解得:a=6,b=4,故答案为:A.【题目点拨】本题考查的知识点是关于x轴对称的点的坐标之间的关系,当所求的坐标是关于x轴对称时,原坐标的横坐标不变,纵坐标为其相反数;当所求的坐标是关于y轴对称时,原坐标的纵坐标不变,横坐标为其相反数;当所求的坐标是关于原点对称时,原坐标的横、纵坐标均变为其相反数.7、B【分析】根据平方差公式的特点即可求解.【题目详解】A.=,不符合题意;B.=,符合题意;C.=,不能使用平方差公式,故错误;D.不能使用平方差公式,故错误;故选B.【题目点拨】此题主要考查平方差公式,解题的关键是熟知平方差公式适用的特点.8、C【题目详解】由题意知,y与x的函数关系为分段函数.故选C.考点:1.一次函数的应用;2.一次函数的图象.9、C【解题分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c<18.故选C.10、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】,,中的分母中均不含有字母,因此它们是整式,而不是分式,,分母中含有字母,因此是分式.
综上所述,分式的个数是2个.故选:B.【题目点拨】本题考查的是分式的定义,解答此题时要注意分式的定义,只要是分母中含有未知数的式子即为分式.二、填空题(每小题3分,共24分)11、等腰68°【分析】(1)根据尺规作图方法可知,直线MN为线段AC的垂直平分线,由垂直平分线的性质可得AD=CD,从而判断△ADC为等腰三角形;(2)由三角形的外角的性质可知∠ADB的度数,再由AB=BD,可得∠BAD=∠ADB,最后由三角形的内角和计算即可.【题目详解】解:(1)由题意可知,直线MN为线段AC的垂直平分线,∴AD=CD∴△ADC为等腰三角形,故答案为:等腰.(2)∵△ADC是等腰三角形,∴∠C=∠DAC=28°,又∵∠ADB是△ADC的外角,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵∠BAD=∠ADB=56°∴∠B=180°-∠BAD-∠ADB=180°-56°-56°=68°,故答案为:68°.【题目点拨】本题考查了垂直平分线的尺规作图、等腰三角形的性质,解题的关键是熟知直线MN为线段AC的垂直平分线,并灵活运用等腰三角形中的角度计算.12、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】根据科学记数法的表示方法可得:0.0000000031=3.1×10-1.故答案为3.1×10-1米.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、20°【分析】由,得∠AEC=,结合,即可得到答案.【题目详解】∵,,∴∠AEC=,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【题目点拨】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.14、【分析】根据积的乘方的逆运算,把原式变形为指数相同的,然后利用有理数的乘方和乘法法则进行计算即可.【题目详解】原式,故答案为:.【题目点拨】本题考查了积的乘方公式,逆用公式是解题的关键,注意负数的奇次方是负数.15、∠APO=∠BPO(答案不唯一)【解题分析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.16、【分析】原式提取公因式,再利用完全平方公式分解即可.【题目详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17、【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x+2y=2,再代入x=3即可求出y的值.【题目详解】解:从图象可以得到,和是二元一次方程ax+by=c的两组解,∴2a=c,b=c,∴x+2y=2,当x=3时,y=,故答案为.【题目点拨】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.18、1【解题分析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可.【题目详解】根据题意得:-=1,方程两边都乘以x-2得:-(1-x)-1=1(x-2),解得:x=1,检验:把x=1代入x-2≠0,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大1.【题目点拨】本题考查了解分式方程,能求出分式方程的解是解此题的关键.三、解答题(共66分)19、(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.【题目详解】(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则,解得:,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=,∴Q(,﹣3),P(﹣,3),设直线PQ的解析式为:y=ax+c,∴,解得:,∴直线PQ的解析式为:y=﹣x+.【题目点拨】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.20、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【题目详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.21、第3步;【分析】根据二次根式的性质、分母有理化法则判断、改正即可.【题目详解】解:小明同学的做法有误,错误步骤是第3步;改正:【题目点拨】本题考查的是二次根式的化简,掌握二次根式的性质、分母有理化是解题的关键.22、(1)30,1;(2)第二种方案学校付的修理费最少.【分析】(1)关键描述语为:“甲小组单独修理这批桌凳比乙小组多用1天”;等量关系为:甲小组单独修理这批桌凳的时间=乙小组单独修理这批桌凳的时间+1.(2)必须每种情况都考虑到,求出每种情况下实际花费,进行比较.【题目详解】解:(1)设甲木工组单独修理这批桌凳的天数为x天,则乙木工组单独修理这批桌凳的天数为(x﹣10)天;根据题意得,=×,解得:x=30,经检验:x=30是原方程的解.∴x﹣10=1.答:甲,乙两木工组单独修理这批桌凳的天数分别为30天,1天;(2)方案一:甲木工组单独修理这批桌凳的总费用:600×30=18000(元).方案二,乙小组单独修理,则需总费用:800×1=16000(元).方案三,甲,乙两个木工组共同合作修理需12(天)总费用:(600+800)×12=16800(元)通过比较看出:选择第二种方案学校付的修理费最少.【题目点拨】考核知识点:分式方程的运用.找出等量关系是关键.23、(1),,;(2)图见解析;(3)的面积为1.【分析】(1)结合网格的特点,根据在平面直角坐标系中,点的位置即可得;(2)先分别画出点关于y轴的对称点,再顺次连接即可得;(3)根据的面积等于正方形ADEF的面积减去三个直角三角形的面积即可得.【题目详解】(1)结合网格的特点,由在平面直角坐标系中,点的位置得:点A的坐标为,点B的坐标为,点C的坐标为故答案为:,,;(2)先分别画出点关于y轴的对称点,再顺次连接可得到,如图所示:(3)结合网格可知,四边形ADEF是正方形,都是直角三角形则故的面积为1.【题目点拨】本题考查了平面直角坐标系、画轴对称图形等知识点,掌握轴对称图形的画法是解题关键.24、(1)甲工厂每天加工16件产品,乙工厂每天加工24件产品.(2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解题分析】(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.【题目详解】(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,则:解得:x=16经检验,x=16是原分式方程的解∴甲工厂每天加工16件产品,乙工厂每天加工24件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60天需要的总费用为:60
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土方委托协议合同
- 蟾蜍代养殖协议合同范本
- 股份制合同协议书版本
- 商品转让合同协议
- 汽车合伙合同协议
- 盒饭合同协议书范本
- 签订肥料协议合同
- 三方合同协议招标代理
- 邮政快递合作合同协议书
- 农产品购销合同协议样本
- DL-T+961-2020电网调度规范用语
- 电动伸缩雨棚合同范本
- 2024中国奥特莱斯行业白皮书
- G-B-Z 25320.1003-2023 电力系统管理及其信息交换 数据和通信安全 第100-3部分:IEC 62351-3的一致性测试用例和包括TCP-IP协议集的安全通信扩展 (正式版)
- 小学毕业会考数学试卷附参考答案(a卷)
- 急救知识科普完整版课件
- 2024年教师招聘考试《教育综合知识》模拟题及答案
- 2024年事业单位招聘考试时事政治试题库新版
- 华为跨部门协同机制建设
- 河南省许昌市长葛市2023-2024学年八年级下学期期中数学试题
- MOOC 中国传统艺术-篆刻、书法、水墨画体验与欣赏-哈尔滨工业大学 中国大学慕课答案
评论
0/150
提交评论