




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省莱芜市牛泉镇刘仲莹中学2024届八上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.-2 C.-1 D.22.如图,不是轴对称图形的是()A. B. C. D.3.将一副常规的三角尺按如图方式放置,则图中∠1的度数为()A.95° B.100° C.105° D.115°4.如图,将长方形的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形,已知,,则边的长是()A. B. C. D.5.在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为()A.50° B.40° C.30° D.25°6.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30° D.∠A=∠B=∠C7.若分式,则分式的值等于()A.﹣ B. C.﹣ D.8.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为()时,ED恰为AB的中垂线.A.15° B.20° C.30° D.25°9.下列分式的约分中,正确的是()A.=- B.=1-y C.= D.=10.若实数m、n满足等式,且m、n恰好是等腰的两条边的边长,则的周长()A.12 B.10 C.8 D.611.把分式中的x、y的值都扩大到原来的2倍,则分式的值…()A.不变 B.扩大到原来的2倍C.扩大到原来的4倍 D.缩小到原来的12.下列二次根式的运算正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知一次函数y=kx﹣4(k<0)的图象与两坐标轴所围成的三角形的面积等于8,则该一次函数表达式为_____.14.若直角三角形的一个锐角为25°,则另一锐角为________.15.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为______.16.如图,已知,点A在边OX上,,过点A作于点C,以AC为一边在内作等边三角形ABC,点P是围成的区域(包括各边)内的一点,过点P作交OX于点D,作交OY于点E,则的最大值与最小值的积是______.17.如图,在四边形中,且,,,平分交的延长线于点,则_________.18.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.三、解答题(共78分)19.(8分)如图,,点为上点,射线经过点,且,若,求的度数.20.(8分)如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点A,C的坐标分别为(﹣5,﹣1),(﹣3,﹣3),并写出点D的坐标;(2)在(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.21.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.22.(10分)如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想.(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.23.(10分)在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数进行了探究学习,请根据他们的对话解答问题.(1)张明:当时,我能求出直线与轴的交点坐标为;李丽:当时,我能求出直线与坐标轴围成的三角形的面积为;(2)王林:根据你们的探究,我发现无论取何值,直线总是经过一个固定的点,请求出这个定点的坐标.(3)赵老师:我来考考你们,如果点的坐标为,该点到直线的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.24.(10分)解方程:(1);(2);(3).25.(12分)某中学开展“数学史”知识竞赛活动,八年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)请计算八(1)班、八(2)班两个班选出的5名选手复赛的平均成绩;(2)请判断哪个班选出的5名选手的复赛成绩比较稳定,并说明理由?26.已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=38º,求∠DCB的度数;(2)若AB=5,CD=3,求△BCD的面积.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题分析:依据多项式乘以多项式的法则,进行计算(x+2)(x-1)=+x﹣2=+mx+n,然后对照各项的系数即可求出m=1,n=﹣2,所以m+n=1﹣2=﹣1.故选C考点:多项式乘多项式2、A【分析】根据轴对称图形的概念对各选项进行分析即可得出结论.【题目详解】A.不是轴对称图形,故本选项正确;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.是轴对称图形,故本选项错误.故选:A.【题目点拨】本题考查了轴对称图形的识别,掌握轴对称图形的概念是解答本题的关键.3、C【分析】根据题意求出∠BCO,再根据三角形的外角的性质计算即可.【题目详解】如图,由题意得:∠BCO=∠ACB﹣∠ACD=60°-45°=15°,∴∠1=∠B+∠BCO=90°+15°=105°.故选C.【题目点拨】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答本题的关键.4、C【分析】利用三个角是直角的四边形是矩形,易证四边形EFGH为矩形,那么由折叠可得HF的长及为AD的长.【题目详解】解:∵∠HEM=∠AEH,∠BEF=∠FEM∴∠HEF=∠HEM+∠FEM=,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∵AD=AH+HD=HM+MF=HFHF=,故答案为:C.【题目点拨】本题考查了旋转、折叠、勾股定理等知识,解题的关键是将AD转化为HF.5、A【分析】根据三角形内角和定理求出∠B+∠C,根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据等腰三角形的性质计算即可.【题目详解】∵∠BAC=115°,∴∠B+∠C=65°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAG=∠BAC-(∠EAB+∠GAC)=∠BAC-(∠B+∠C)=50°,故选A.【题目点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6、D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【题目详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=°,所以A选项错误;
B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;
C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;
D、∠A+∠B+∠C=180°,而∠A=∠B=∠C,则∠C=90°,所以D选项正确.
故选:D.【题目点拨】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.7、B【解题分析】试题分析:整理已知条件得y-x=2xy;∴x-y=-2xy将x-y=-2xy整体代入分式得.故选B.考点:分式的值.8、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【题目详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【题目点拨】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.9、C【分析】分别根据分式的基本性质进行化简得出即可.【题目详解】A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.【题目点拨】本题考查了分式的约分,在约分时要注意约掉的是分子分母的公因式.10、B【分析】先根据绝对值的非负性、二次根式的非负性求出m、n的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【题目详解】由题意得:,解得,设等腰的第三边长为a,恰好是等腰的两条边的边长,,即,又是等腰三角形,,则的周长为,故选:B.【题目点拨】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.11、A【解题分析】把分式中的x、y的值都扩大到原来的2倍,可得,由此可得分式的值不变,故选A.12、B【分析】根据二次根式的性质对A进行判断,根据二次根式的除法法则对B进行判断,根据二次根式的加法对C进行判断,根据二次根式的乘法法则对D进行判断.【题目详解】解:A、=5,所以A选项的计算错误;B、,所以B选项的计算正确;C、,所以C选项的计算错误;D、,所以D选项的计算错误;故选B.【题目点拨】本题考查了二次根式的混合运算、二次根式的化简;熟练掌握二次根式的化简与运算是解决问题的关键.二、填空题(每题4分,共24分)13、y=﹣x﹣1【分析】先求出直线与坐标轴的交点坐标,再根据三角形的面积公式列出方程,求得k值,即可.【题目详解】令x=0,则y=0﹣1=﹣1,令y=0,则kx﹣1=0,x=,∴直线y=kx﹣1(k<0)与坐标轴的交点坐标为A(0,﹣1)和B(,0),∴OA=1,OB=-,∵一次函数y=kx﹣1(k<0)的图象与两坐标轴所围成的三角形的面积等于8,∴,∴k=﹣1,∴一次函数表达式为:y=﹣x﹣1.故答案为:y=﹣x﹣1.【题目点拨】本题主要考查求一次函数的解析式,掌握一次函数图象与坐标轴的交点坐标求法,是解题的关键.14、1°【分析】根据直角三角形两锐角互余列式计算即可得解.【题目详解】∵直角三角形的一个锐角为25°,∴它的另一个锐角为90°-25°=1°.故答案为1.【题目点拨】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.15、1【分析】利用基本作图得到MN垂直平分AB,则DA=DB,利用等线段代换得到BC+AC=10,然后计算△ABC的周长.【题目详解】由作法得MN垂直平分AB,∴DA=DB,∵△ADC的周长为10,∴DA+CD+AC=10,∴DB+CD+AC=10,即BC+AC=10,∴△ABC的周长=BC+AC+AB=10+8=1.故答案为1.【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了线段垂直平分线的性质.16、1【分析】结合题意,得四边形ODPE是平行四边形,从而得到;结合点P是围成的区域(包括各边)内的一点,推导得当点P在AC上时,取最小值;当点P与点B重合时,取最大值;再分别根据两种情况,结合平行四边形、等边三角形、勾股定理的性质计算,即可完成求解.【题目详解】过点P做交于点H∵∴∵∴∴∵,∴四边形ODPE是平行四边形∴∴∴∵点P是围成的区域(包括各边)内的一点结合图形,得:当点P在AC上时,取最小值;当点P与点B重合时,取最大值;当点P在AC上时,∵,∴∴最小值;当点P与点B重合时,如下图,AC和BD相交于点G∴∵,,∴,,∵等边三角形ABC∴,∴∴∴∴GB是等边三角形ABC的角平分线∴又∵,即∴是的中位线∴∴,∴∵∴∴∴∴最大值∴最大值与最小值的积故答案为:1.【题目点拨】本题考查了平行四边形、勾股定理、直角三角形、等边三角形、等边三角形中位线、平行线的知识;解题的关键是熟练掌握平行线、平行四边形、等边三角形、勾股定理的性质,从而完成求解.17、3;【分析】由,AE平分,得到∠EAB=∠F,则AB=BF=8,然后即可求出CF的长度.【题目详解】解:∵,∴∠DAE=∠F,∵AE平分,∴∠DAE=∠EAB,∴∠EAB=∠F,∴AB=BF=8,∵,∴;故答案为:3.【题目点拨】本题考查了平行线的性质,角平分线的定义,以及等角对等边,解题的关键是熟练掌握所学的性质,得到AB=BF.18、y=-x+1.【解题分析】根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【题目详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【题目点拨】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.三、解答题(共78分)19、【分析】先根据等腰三角形的性质得出∠C=30°,再根据三角形外角性质得到∠DEA=60°,最后根据平行线的性质得到即可.【题目详解】,,,是的外角,,,.【题目点拨】椙主要考查了等腰三角形的性质、三角形外角的性质以及平行线的性质,熟练掌握这些性质是解题的关键.20、(1)B(﹣4,﹣5)、D(﹣1,﹣2);(2)C1的坐标为:(﹣3,3).【解题分析】(1)根据已知点坐标进而得出坐标轴的位置,进而得出答案;(2)利用关于x轴对称点的性质得出对应点坐标进而得出答案.【题目详解】(1)如图所示:点B(﹣4,﹣5)、D(﹣1,﹣2);(2)如图所示:四边形A1B1C1D1,即为所求,点C的对应点C1的坐标为:(﹣3,3).【题目点拨】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.21、原式==﹣2.【解题分析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣1时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.22、(1)BM=FN,证明见解析(2)BM=FN仍然成立,证明见解析.【解题分析】试题分析:(1)根据正方形和等腰直角三角形的性质可证明△OBM≌△OFN,所以根据全等的性质可知BM=FN;(2)同(1)中的证明方法一样,根据正方形和等腰直角三角形的性质得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可证△OBM≌△OFN,所以BM=FN.试题解析:(1)BM=FN.证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠ABD=∠F=45°,OB=OF.又∵∠BOM=∠FON,∴△OBM≌△OFN.∴BM=FN.(2)BM=FN仍然成立.证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.∴∠MBO=∠NFO=135°.又∵∠MOB=∠NOF,∴△OBM≌△OFN.∴BM=FN.点睛:本题考查旋转知识在几何综合题中运用,旋转前后许多线段相等,本题以实验为背景,探索在不同位置关系下线段的关系,为中考常见的题型.23、(1)(3,0),;(2)(2,1);(3);【分析】(1)张明:将k值代入求出解析式即可得到答案;李丽:将k值代入求出解析式,得到直线与x轴和y轴的交点,即可得到答案;(2)将转化为(y-1)=k(x-2)正比例函数,即可求出;(3)由图像必过(2,1)设必过点为A,P到直线的距离为PB,发现直角三角形ABP中PA是最大值,所以当PA与垂直时最大,求出即可.【题目详解】解:(1)张明:将代入得到y=-x-2×(-1)+1y=-x+3令y=0得-x+3=0,得x=3所以直线与轴的交点坐标为(3,0)李丽:将代入得到y=2x-3直线与x轴的交点为(,0)直线与y轴的交点为(0,-3)所以直线与坐标轴围成的三角形的面积=(2)∵转化为(y-1)=k(x-2)正比例函数∴(y-1)=k(x-2)必过(0,0)∴此时x=2,y=1通过图像平移得到必过(2,1)(3)由图像必过(2,1)设必过点为A,P到直线的距离为PB由图中可以得到直角三角形ABP中AP大于直角边PB所以P到最大距离为PA与直线垂直,即为PA∵P(-1,0)A(2,1)得到PA=答:点P到最大距离的距离存在最大值为.【题目点拨】此题主要考查了一次函数的性质及一次函数的实际应用-几何问题,正确理解点到直线的距离是解题的关键.24、(1);(2);(3).【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】(1),解得,经检验是原方程的解,(2),解得:经检验是分式方程的解.(3)5x=-3解得检验:当时,∴是原方程的解.【题目点拨】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版危险品运输司机聘用合同范例x
- 场地合作合同书范例
- 某宾馆施工组织设计
- 某公司渠道管理手册
- 2025年全国防灾减灾5.12全国防灾减灾知识竞赛题库 与答案
- 高品质纤维新材料项目运营管理手册(模板范文)
- 电力安全管理培训课件
- 2024年游泳救生员技术知识复盘
- 植保员的协作与团队建设能力试题及答案
- 2024年篮球裁判员的考纲与专业试题及答案
- 接触网高空作业安全培训
- 三角堰流量计算公式
- 砌体工程事故及事故分析
- 《改善患者就医体验》课件
- 《产科超声之科普讲》课件
- 用电安全及防雷防静电知识考核试卷
- 《成人心肺复苏术》课件
- 服务机器人的智能导航与定位考核试卷
- 化验室培训课件
- 噬血细胞综合征并发患者的个案护理课件
- 当代中国外交 第三章 70年代的中国外交
评论
0/150
提交评论