版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省安溪六中数学高一上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.2.已知三个变量随变量变化数据如下表:则反映随变化情况拟合较好的一组函数模型是A. B.C. D.3.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.94.已知角α的始边与x轴的正半轴重合,顶点在坐标原点,角α终边上的一点P到原点的距离为,若α=,则点P的坐标为()A.(1,) B.(,1)C.() D.(1,1)5.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.7.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.8.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.9.函数的最小值为()A. B.C.0 D.10.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图像如图所示,则_______________.12.已知函数的图象经过定点,若为正整数,那么使得不等式在区间上有解的的最大值是__________.13.若直线:与直线:互相垂直,则实数的值为__________14.已知函数,将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到函数的解析式______15.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.16.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值18.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)19.设函数(1)若不等式的解集是,求不等式的解集;(2)当时,在上恒成立,求实数的取值范围20.已知函数,图象上两相邻对称轴之间的距离为;_______________;(Ⅰ)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线与和的图象分别交于、两点,求线段长度的最大值及此时的值.注:如果选择多个条件分别解答,按第一个解答计分.21.已知,,求,实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【题目详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【题目点拨】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题2、B【解题分析】根据幂函数、指数函数、对数函数增长速度的不同可得结果.【题目详解】从题表格可以看出,三个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,呈指数函数变化,变量的增长速度最慢,对数型函数变化,故选B【题目点拨】本题主要考查幂函数、指数函数、对数函数模型的应用,意在考查综合利用所学知识解决问题的能力,属于简单题.3、C【解题分析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.4、D【解题分析】设出P点坐标(x,y),利用正弦函数和余弦函数的定义结合的三角函数值求得x,y值得答案【题目详解】设点P的坐标为(x,y),则由三角函数的定义得即故点P的坐标为(1,1).故选D【题目点拨】本题考查任意角的三角函数的定义,是基础的计算题5、B【解题分析】先化简p,q,再利用充分条件和必要条件的定义判断.【题目详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B6、C【解题分析】易知函数在R上递增,由求解.【题目详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C7、C【解题分析】根据常见函数的单调性和奇偶性,即可容易判断选择.【题目详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【题目点拨】本题考查常见函数单调性和奇偶性的判断,属简单题.8、C【解题分析】运用零点的定义和一元二次方程的解法可得【题目详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【题目点拨】本题考查零点的定义,一元二次方程的解法9、C【解题分析】利用对数函数单调性得出函数在时取得最小值【题目详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C10、A【解题分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【题目详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【题目点拨】充分、必要条件的三种判断方法
定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件
等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法
集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】首先确定函数的解析式,然后求解的值即可.【题目详解】由题意可得:,当时,,令可得:,据此有:.故答案为:.【题目点拨】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.12、【解题分析】由可得出,由已知不等式结合参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围,即可得解.【题目详解】由已知可得,则,解得,故,由得,因为,则,可得,令,,则函数在上单调递减,所以,,.因此,正整数的最大值为.故答案:.13、-2【解题分析】由于两条直线垂直,故.14、【解题分析】根据三角函数图象的变换可得答案.【题目详解】将函数图象上各点的横坐标缩短到原来的倍,得,再将得到的图象向右平移个单位得故答案为:15、【解题分析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【题目详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【题目点拨】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.16、【解题分析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【题目详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3).【解题分析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【题目详解】(1)任意,,因为,,所以,所以,即是“1距”增函数(2).因为是“距”增函数,所以恒成立,因为,所以在上恒成立,所以,解得,因为,所以.(3)因为,,且为“2距”增函数,所以时,恒成立,即时,恒成立,所以,当时,,即恒成立,所以,得;当时,,得恒成立,所以,得,综上所述,得.又,因为,所以,当时,若,取最小值为;当时,若,取最小值.因为在R上是单调递增函数,所以当,的最小值为;当时的最小值为,即.【题目点拨】本题考查了函数的综合知识,考查了函数的单调性与最值,考查了恒成立问题,考查了分类讨论思想的运用,属于中档题18、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解题分析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【题目详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【题目点拨】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值19、(1)或(2)【解题分析】(1)由题意,是方程的解,利用韦达定理求解,代入,结合一元二次函数、方程、不等式的关系求解即可;(2),代入转化不等式为,换元法求解的最大值即可【小问1详解】因为不等式的解集是,所以是方程的解由韦达定理解得故不等式为,即解得或故不等式得其解集为或【小问2详解】当时,在上恒成立,所以令,则令,则,由于均为的减函数故在上为减函数所以当时,取最大值,且最大值为3所以所以所以实数的取值范围为.20、(Ⅰ)选①或②或③,;(Ⅱ)当或时,线段的长取到最大值.【解题分析】(Ⅰ)先根据题中信息求出函数的最小正周期,进而得出.选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;(Ⅱ)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出在上的最大值和最小值,由此可求得线段长度的最大值及此时的值.【题目详解】(Ⅰ)由于函数图象上两相邻对称轴之间的距离为,则该函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育培训机构学员保护制度
- 2024年国际缝纫设备展览会的参展合同
- 2024年农田复垦工程承包合同
- 2024年创意设计委托合同
- 桥梁排水管道施工方案
- 2024年儿童乐园场地租赁合同应对多种情景
- 湖南省浏阳市2024-2025学年高一上学期10月联合质量监测数学试卷(解析版)
- 2024年度江西省高校教师资格证之高等教育心理学模拟题库及答案下载
- 2024年二手汽车买卖合同
- 塑木地板销售及安装合同
- 服装企业安全台账2
- 国内研究现状及发展趋势分析
- 信息技术(基础模块上下册)4.3分析数据
- 鲁科版《盐类的水解》省公开课金奖全国赛课一等奖微课获奖课件
- 11水平五 高一 田径单元18课时计划-《田径:跨栏跑-跨栏步》教案
- “三新”背景下2024年高考政治一轮复习策略建议
- 网球活动策划推广方案
- 全国食品安全风险监测参考值 2024年版
- 急救学教学课件
- 2023年福建省考评员考试题
- (高清版)TDT 1032-2011 基本农田划定技术规程
评论
0/150
提交评论