版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市临漳第一中学2024届高一上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.22.在中,为边的中点,则()A. B.C. D.3.将函数的图象向左平移个单位,再将图象上各点的纵坐标不变,横坐标变为原来的,那么所得图象的函数表达式为A. B.C. D.4.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为A. B.C. D.5.函数单调递增区间为A. B.C D.6.已知,则化为()A. B.C.m D.17.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.8.已知命题“存在,使得等式成立”是假命题,则实数的取值范围是()A. B.C. D.9.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.410.已知点是角终边上一点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则的值为_________.12.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______13.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______14.已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,则a的取值范围为________15.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计16.已知,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.18.已知函数(Ⅰ)求的最小正周期及对称轴方程;(Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.19.已知函数,其中.(1)当时,求的值域和单调区间;(2)若存在单调递增区间,求a的取值范围.20.求解下列问题(1)化简(其中各字母均为正数):;(2)化简并求值:21.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【题目详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【题目点拨】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力2、B【解题分析】由平面向量的三角形法则和数乘向量可得解【题目详解】由题意,故选:B【题目点拨】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题3、B【解题分析】将函数的图象向左平移个单位后所得图象对应的的解析式为;再将图象上各点纵坐标不变,横坐标变为原来的,所得图象对应的解析式为.选B4、A【解题分析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可.详解:由题意得扇形的半径为:又由扇形面积公式得该扇形的面积为:.故选:A.点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.5、A【解题分析】,所以.故选A6、C【解题分析】把根式化为分数指数幂进行运算【题目详解】,.故选:C7、B【解题分析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【题目详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.8、D【解题分析】由题意可得,由的范围可得的范围,再求其补集即可求解.【题目详解】由可得,因为,所以,若命题“存在,使得等式成立”是假命题,则实数的取值范围是,故选:D.9、B【解题分析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【题目点拨】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题10、D【解题分析】利用任意角的三角函数的定义可求得的值,进而可得答案.【题目详解】因为点是角终边上一点,所以,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,填.12、②③【解题分析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.13、1【解题分析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【题目详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:114、(-4,4]【解题分析】根据复合函数的单调性,结合真数大于零,列出不等式求解即可.【题目详解】令g(x)=x2-ax+3a,因为f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以a≤2且g(2)>0,所以a≤4且4+a>0,所以-4<a≤4故答案为:.【题目点拨】本题考查由对数型复合函数的单调性求参数范围,注意定义域即可,属基础题.15、8100【解题分析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【题目详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【题目点拨】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题16、3【解题分析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【题目详解】由题设,,可得,∴.故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)(3)答案见解析【解题分析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的值域,即可得出答案;(3)原不等式成立即为,令,则,分和两种情况讨论,从而可得出答案.【小问1详解】解:因为函数是定义在上的奇函数,所以,解得,当时,,此时,故当时,函数为奇函数,所以;【小问2详解】解:因为函数的图象经过点,所以函数经过点,故,即,当时,函数为增函数,故,为使方程有解,则,所以;【小问3详解】解:原不等式成立即为,当时,函数单调递增,故只要即可,令,则,∵,∴,∴对恒成立,由得;由得∴;同理,当时,函数单调递减,故只要即可,∴对恒成立,解得;综上可知,当时,;当时,18、(Ⅰ)最小正周期是,对称轴方程为;(Ⅱ)时,函数取得最小值,最小值为-2,时,函数取得最大值,最大值为1.【解题分析】(Ⅰ)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质求出对称轴及最小正周期;(Ⅱ)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【题目详解】解:(Ⅰ)由与得所以的最小正周期是;令,解得,即函数的对称轴为;(Ⅱ)当时,所以,当,即时,函数取得最小值,最小值为当,即时,函数取得最大值,最大值为.19、(1)见解析(2)【解题分析】(1)利用换元法设,求出的范围,再由对数函数的性质得出值域,再结合复合函数的单调性得出的单调区间;(2)分别讨论,两种情况,结合复合函数的单调性以及二次函数的性质得出a的取值范围.【题目详解】(1)当时,设,由,解得即函数的定义域为,此时则,即的值域为要求单调增(减)区间,等价于求的增(减)区间在区间上单调递增,在区间上单调递减在区间上单调递增,在区间上单调递减(2)当时,存在单调递增区间,则函数存在单调递增区间则判别式,解得或(舍)当时,存在单调递增区间,则函数存在单调递减区间则判别式,解得或,此时不成立综上,a的取值范围为【题目点拨】关键点睛:本题主要考查了对数型复合函数的单调性问题,解题的关键在于利用复合函数单调性的性质进行求解.20、(1)(2)【解题分析】(1)结合指数运算求得正确答案.(2)结合对数运算求得正确答案.【小问1详解】原式【小问2详解】原式21、入射光线所在直线方程为2x-y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度仪器设备购买合同
- 二零二四年度旅游业务合作与投资合同
- 2024年度健康检测与咨询服务合同
- 二零二四年度城市供热系统建设爆破作业承包合同
- 2024年度企业IT基础设施升级改造合同
- 2024年度电梯设备维修服务承包合同
- 不锈钢购销合同范本
- 成人教育学校年度工作总结
- 2024年度大型仓储叉车维修保养合同
- 医院特种设备事故应急救援预案
- 民用航空货物邮件运输安全保卫规则培训考试专项试卷
- 2024-2030年中国高速公路服务区行业投资分析及前景规划研究报告
- 企业发展战略规划实施
- 广东省东莞市塘厦初级中学2024-2025学年九年级上学期期中考试英语试题
- 2023-2024学年广东省深圳市坪山区八年级(上)期末英语试卷
- 管理能力与领导力管理培训
- 《工贸企业有限空间作业安全规定》知识培训
- CQI-23模塑系统评估审核表-中英文
- 2024年河南省中考英语试题含解析
- 2024-2030年电动牙刷市场投资前景分析及供需格局研究预测报告
- 第03讲 鉴赏诗歌的表达技巧(讲义)(学生版) 2025年高考语文一轮复习讲练测(新教材新高考)
评论
0/150
提交评论