2024届云南省腾冲一中高一数学第一学期期末教学质量检测模拟试题含解析_第1页
2024届云南省腾冲一中高一数学第一学期期末教学质量检测模拟试题含解析_第2页
2024届云南省腾冲一中高一数学第一学期期末教学质量检测模拟试题含解析_第3页
2024届云南省腾冲一中高一数学第一学期期末教学质量检测模拟试题含解析_第4页
2024届云南省腾冲一中高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省腾冲一中高一数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π2.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.3.函数的图象大致为()A. B.C. D.4.设集合,则A. B.C. D.5.已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.6.且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p38.命题“,使得”的否定是()A., B.,C., D.,9.已知,,,则的大小关系为A. B.C. D.10.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于412.已知,若,则的最小值是___________.13.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.14.函数(且)的图像恒过定点______.15.已知一个扇形的面积为,半径为,则其圆心角为___________.16.若幂函数的图象过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)若,求a的值;(2)若函数在内有且只有一个零点,求实数a的取值范围18.已知二次函数.(1)若函数满足,且.求的解析式;(2)若对任意,不等式恒成立,求的最大值.19.已知是第二象限,且,计算:(1);(2)20.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.21.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【题目详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D2、B【解题分析】化简得到,得到,进而得到,即可求解.【题目详解】由题意,函数,可得,可得,即,因为,所以.故选:B.3、D【解题分析】根据函数的奇偶性可排除选项A,B;根据函数在上的单调性可排除选项C,进而可得正确选项.【题目详解】函数的定义域为且,关于原点对称,因为,所以是偶函数,图象关于轴对称,故排除选项A,B,当时,,由在上单调递增,在上单调递减,可得在上单调递增,排除选项C,故选:D.4、B【解题分析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5、D【解题分析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【题目详解】由题设有,令,则有即因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【题目点拨】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.6、D【解题分析】直接由三角函数的象限符号取交集得答案.【题目详解】由,可得为第二或第四象限角;由,可得为第一、第四及轴非负半轴上的角∴取交集可得,是第四象限角故选:D7、A【解题分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【题目详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.8、B【解题分析】根据特称命题的否定的知识确定正确选项.【题目详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B9、A【解题分析】利用利用等中间值区分各个数值的大小【题目详解】;;故故选A【题目点拨】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待10、A【解题分析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【题目详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【题目点拨】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、③⑤【解题分析】按照平均数、极差、方差依次分析各序号即可.【题目详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.12、16【解题分析】乘1后借助已知展开,然后由基本不等式可得.【题目详解】因为,所以当且仅当,,即时,取“=”号,所以的最小值为16.故答案为:1613、36【解题分析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【题目详解】解:依题意、cm,所以,即cm,所以;故答案为:14、【解题分析】根据指数函数恒过定点的性质,令指数幂等于零即可.【题目详解】由,.此时.故图像恒过定点.故答案为:【题目点拨】本题主要考查指数函数恒过定点的性质,属于简单题.15、【解题分析】结合扇形的面积公式即可求出圆心角的大小.【题目详解】解:设圆心角为,半径为,则,由题意知,,解得,故答案为:16、【解题分析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【题目详解】设,则,得,,因此,.故答案为.【题目点拨】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由即可列方程求出a的值;(2)化简f(x)解析式,利用进行换元,将问题转化为在内有且只有一个零点,在上无零点进行讨论.【小问1详解】由得,即,,解得,∵,∴;【小问2详解】,令,则当时,,,,在内有且只有一个零点等价于在内有且只有一个零点,在上无零点.∵a>1,在内为增函数.①若在内有且只有一个零点,内无零点,故只需,解得;②若为的零点,内无零点,则,得,经检验,符合题意综上,实数a的取值范围是18、(1)(2)【解题分析】(1)利用待定系数的方法确定二次函数解析式(2)由二次不等式恒成立,转化参数关系,代入通过讨论特殊情况后配合基本不等式求出最值【小问1详解】设,由已知代入,得,对于恒成立,故,解得,又由,得,所以;【小问2详解】若对任意,不等式恒成立,​​​​​​​整理得:恒成立,因为a不为0,所以,所以,所以,令,因为,所以,若时,此时,若时,,当时,即时,上式取得等号,​​​​​​​综上的最大值为.19、(1);(2).【解题分析】(1)首先根据诱导公式化简,再上下同时除以后,转化为正切表示的式子,求值;(2)首先利用诱导公式化简,再转化为齐次分式形式,转化为正切求值.【题目详解】(1)原式,上下同时除以后,得;(2)原式,上下同时除以后,得20、(1)证明见解析;(2)【解题分析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【题目详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为21、(1);(2)答案见解析.【解题分析】(1)先将分式不等式转化成一元二次不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论