2024届浙江省浙东北联盟高一上数学期末检测试题含解析_第1页
2024届浙江省浙东北联盟高一上数学期末检测试题含解析_第2页
2024届浙江省浙东北联盟高一上数学期末检测试题含解析_第3页
2024届浙江省浙东北联盟高一上数学期末检测试题含解析_第4页
2024届浙江省浙东北联盟高一上数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省浙东北联盟高一上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A B.C. D.2.设函数,则的值为()A. B.C. D.183.已知全集,集合,,则∁U(A∪B)=A. B.C. D.4.函数的图象大致是()A. B.C. D.5.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值6.已知,,,则下列判断正确是()A. B.C. D.7.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.8.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.9.函数的部分图象大致是A. B.C. D.10.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第四象限的角,,则________.12.写出一个同时具有下列性质①②③的函数_________①在R上单调递增;②;③13.在区间上随机取一个实数,则事件发生的概率为_________.14.的值为______.15.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.16.已知函数的图像恒过定点,则的坐标为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)的单调性;(3)解不等式:f(x2-2x)+f(3x-2)<0;18.已知函数,在区间上有最大值,最小值,设函数.(1)求的值;(2)不等式在上恒成立,求实数的取值范围;(3)方程有三个不同的实数解,求实数的取值范围.19.设函数且是定义域为的奇函数,(1)若,求的取值范围;(2)若在上的最小值为,求的值20.已知函数,,.(1)若,求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明.21.如图,在正方体中,、分别为、的中点,与交于点.求证:(1);(2)平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【题目详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A2、B【解题分析】根据分段函数的不同定义域对应的函数解析式,进行代入计算即可.【题目详解】,故选:B3、C【解题分析】,,,∁U(A∪B)=故答案为C.4、B【解题分析】根据函数的奇偶性和正负性,运用排除法进行判断即可.【题目详解】因为,所以函数是偶函数,其图象关于纵轴对称,故排除C、D两个选项;显然,故排除A,故选:B5、B【解题分析】换元法后用基本不等式进行求解.【题目详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B6、C【解题分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【题目详解】,即.故选:C.7、C【解题分析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.8、B【解题分析】根据向量加减法计算,再进行判断选择.【题目详解】;;;故选:B【题目点拨】本题考查向量加减法,考查基本分析求解能力,属基础题.9、B【解题分析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.10、C【解题分析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【题目详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】给两边平方先求出,然后利用完全平方公式求出,再利用公式可得结果.【题目详解】∵,两边平方得:,∴,∴,∵为第四象限角,∴,,∴,∴.故答案为:【题目点拨】此题考查的是同角三角函数的关系和二倍角公式,属于基础题.12、(答案不唯一,形如均可)【解题分析】由指数函数的性质以及运算得出.【题目详解】对函数,因在R上单调递增,所以在R上单调递增;,.故答案为:(答案不唯一,形如均可)13、【解题分析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型14、【解题分析】利用对数恒等式直接求解.【题目详解】解:由对数恒等式知:=2故答案为2.【题目点拨】本题考查指数式、对数式化简求值,对数恒等式公式的合理运用,属于基础题.15、【解题分析】由图可知,16、【解题分析】由过定点(0,1),借助于图像平移即可.【题目详解】过定点(0,1),而可以看成的图像右移3个单位,再下移2个点位得到的,所以函数的图像恒过定点即A故答案为:【题目点拨】指数函数图像恒过(0,1),对数函数图像恒过(1,0).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)单调增函数,证明见解析(3)【解题分析】(1)按照奇函数的定义判断即可;(2)按照单调性的定义判断证明即可;(3)由单调递增解不等式即可.【小问1详解】易知函数定义域R,所以函数为奇函数.【小问2详解】设任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是单调增函数【小问3详解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定义在R上的奇函数且在(-∞,+∞)上单调递增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是18、(1);(2);(3)【解题分析】(1)利用二次函数闭区间上的最值,通过a与0的大小讨论,列出方程,即可求a,b的值;(2)转化不等式f(2x)﹣k•2x≥0,为k在一侧,另一侧利用换元法通过二次函数在x∈[﹣1,1]上恒成立,求出最值,即可求实数k的取值范围;(3)化简方程f(|2x﹣1|)+k(3)=0,转化为两个函数的图象的交点的个数,利用方程有三个不同的实数解,推出不等式然后求实数k的取值范围【题目详解】解:(1)g(x)=a(x﹣1)2+1+b﹣a,∵a>0,∴g(x)在[2,3]上为增函数,故,可得,⇔∴a=1,b=0(2)方程f(2x)﹣k•2x≥0化为2x2≥k•2x,k≤1令t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=φ(1)=0,∴k≤0(3)由f(|2x﹣1|)+k(3)=0得|2x﹣1|(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0【题目点拨】本题考查函数恒成立,二次函数闭区间上的最值的求法,考查转化思想与数形结合的思想19、(1);(2)2【解题分析】(1)由题意,得,由此可得,再代入解方程可得,由此可得函数在上为增函数,再根据奇偶性与单调性即可解出不等式;(2)由(1)得,,令,由得,利用换元法转化为二次函数的最值,再分类讨论即可求出答案【题目详解】解:(1)由题意,得,即,解得,由,得,即,解得,或(舍去),∴,∴函数在上为增函数,由,得∴,解得,或,∴的取值范围是;(2)由(1)得,,令,由得,,∴函数转化为,对称轴,①当时,,即,解得,或(舍去);②当时,,解得(舍去);综上:【题目点拨】本题主要考查函数奇偶性与单调性的综合应用,考查二次函数的最值问题,考查转化与化归思想,考查分类讨论思想,属于中档题20、(1)(2)见解析.【解题分析】(1)由求a的值即可;(2)根据a的大小分类讨论即可.【小问1详解】;【小问2详解】任取,且,则,,,①时,,在单调递增;②时,(i)时,单调递减;(ii)时,单调递增;即时,f(x)在单调递减,在单调递增;③时,,在单调递减.综上所述,时,在单调递增;时,f(x)在单调递减,在单调递增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论