版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市第五中学2024届数学高一上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设实数t满足,则有()A. B.C. D.2.若函数的定义域是,则函数的定义域是()A. B.C. D.3.不等式的解集为,则函数的图像大致为()A. B.C. D.4.将函数图象向左平移个单位后与的图象重合,则()A. B.C D.5.已知,则()A. B.C. D.36.过点且与直线平行的直线方程是()A. B.C. D.7.已知圆:与圆:,则两圆公切线条数为A.1条 B.2条C.3条 D.4条8.函数(且)的图象恒过定点,点又在幂函数的图象上,则的值为()A.-8 B.-9C. D.9.最小正周期为,且在区间上单调递增的函数是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=10.已知,,且满足,则的最小值为()A.2 B.3C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若“”是“”的充要条件,则实数m的取值是_________12.已知,则________.13.设函数,若其定义域内不存在实数,使得,则的取值范围是______14.函数的定义域为_________________________15.函数的值域是__________.16.已知集合,若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点且∠MCN=120°.(1)求圆C的标准方程;(2)求过点P(0,3)的直线l与圆C交于不同的两点D,E,若|DE|=2,求直线l的方程.18.已知,,函数.(1)当时,求不等式的解集;(2)若,求的最小值,并求此时a,b的值.19.设是实数,(1)证明:f(x)是增函数;(2)试确定的值,使f(x)为奇函数20.若幂函数在其定义域上是增函数.(1)求的解析式;(2)若,求的取值范围.21.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本35917…年利润1234…给出以下3个函数模型:①;②(,且);③(,且).(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由,得到求解.【题目详解】解:因为,所以,所以,,则,故选:B2、C【解题分析】由题可列出,可求出【题目详解】的定义域是,在中,,解得,故的定义域为.故选:C.3、C【解题分析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【题目详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C4、C【解题分析】利用三角函数的图象变换可求得函数的解析式.【题目详解】由已知可得.故选:C.5、A【解题分析】结合两角和的正切公式、诱导公式求得正确答案.【题目详解】.故选:A6、D【解题分析】先由题意设所求直线为:,再由直线过点,即可求出结果.【题目详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【题目点拨】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.7、D【解题分析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【题目详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【题目点拨】本题考查了两圆的一般方程与位置关系应用问题,是基础题8、A【解题分析】令,可得点,设,把代入可得,从而可得的值.【题目详解】∵,令,得,∴,∴的图象恒过点,设,把代入得,∴,∴,∴.故选:A9、B【解题分析】选项、先利用辅助角公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项先利用二倍角的正弦公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项直接利用正切函数图象的性质去判断即可.【题目详解】对于选项,,最小正周期为,单调递增区间为,即,该函数在上单调递增,则选项错误;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项正确;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项错误;对于选项,,最小正周期为,在为单调递增,则选项错误;故选:.10、C【解题分析】由题意得,根据基本不等式“1”的代换,计算即可得答案.【题目详解】因为,所以,所以,当且仅当时,即,时取等号所以的最小值为.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、0【解题分析】根据充要条件的定义即可求解.【题目详解】,则{x|}={x|},即.故答案为:0.12、【解题分析】将未知角化为已知角,结合三角恒等变换公式化简即可.【题目详解】解:因为,所以.故答案为:.【题目点拨】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.13、【解题分析】按的取值范围分类讨论.【题目详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【题目点拨】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.14、(-1,2).【解题分析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)15、【解题分析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【题目详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:16、【解题分析】根据求得,由此求得.【题目详解】由于,所以,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x﹣1)2+y2=4;(2)y或x=0【解题分析】(1)由题意设圆心为,且,再由已知求解三角形可得,于是可设圆的标准方程为,由点到直线的距离列式求得值,则圆的标准方程可求;(2)当直线的斜率存在时,设直线的方程为,即,利用圆心到直线的距离等于半径列式求得,可得直线方程,验证当时满足题意,则答案可求【题目详解】解:(1)由题意设圆心为,且,由,可得中,,,则,于是可设圆的标准方程为,又点到直线的距离,解得或(舍去)故圆的标准方程为;(2)当直线的斜率存在时,设直线的方程为,即则由题意可知,圆心到直线的距离故,解得又当时满足题意,故直线的方程为或【题目点拨】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题.18、(1)(2)最小值是3,,【解题分析】(1)代入a,b,解分式不等式即可;(2)利用“1”的变形及均值不等式求出最小值,根据等号成立的条件求出a,b.【小问1详解】当时,,因为由整理得,解得,所以不等式的解集是【小问2详解】因为,所以,,因为所以,即的最小值是3.当且仅当即时等号成立,又,所以,,19、(1)见解析(2)1【解题分析】(1)设x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,结合指数函数的单调性分析可得f(x1)﹣f(x2)<0,可得f(x)的单调性且与a的值无关;(2)根据题意,假设f(x)是奇函数,由奇函数的定义可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),对其变形,解可得a的值,即可得答案【题目详解】(1)证明:设x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上为增函数,则>0,>0,由x1<x2,可得﹣<0,则f(x1)﹣f(x2)<0,故f(x)为增函数,与a的值无关,即对于任意a,f(x)在R为增函数;(2)若f(x)为奇函数,且其定义域为R,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),变形可得2a==2,解可得,a=1,即当a=1时,f(x)为奇函数【题目点拨】证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.20、(1);(2)或.【解题分析】(1)根据幂函数的概念,以及幂函数单调性,求出,即可得出解析式;(2)根据函数单调性,将不等式化为,求解,即可得出结果.【题目详解】(1)因为是幂函数,所以,解得或,又是增函数,即,,则;(2)因为为增函数,所以由可得,解得或的取值范围是或.21、(1)可用③来描述x,y之间的关系,(2)该企业要考虑转型.【解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年氢氧化锶项目融资计划书
- 工业机器人技术与应用试题库(附参考答案)
- 养老院老人疾病管理制度
- 2024年物业协议终止补充协议书一
- 收取管理费的合同(2篇)
- 全员违章治理培训课件
- 2025年南京货运从业资格试题答案大全
- 2025年保山运输从业资格证考试试题库
- 2025年山东货运从业资格证摸拟考试试题答案解析
- 2025年西藏货运从业资格证考试题答案
- 心理健康与大学生活学习通超星期末考试答案章节答案2024年
- 借款协议(父母借款给子女买房协议)(二篇)
- 外研版英语2024七年级上册全册单元知识清单(记忆版)
- 歌唱语音智慧树知到期末考试答案章节答案2024年齐鲁师范学院
- MOOC 美在民间-南京农业大学 中国大学慕课答案
- 中国马克思主义与当代课后习题答案
- 工程水文学总复习综述
- 蹲踞式跳远教学课件
- 智能系统工程自评报告
- 赛柏斯涂层防水施工工法
- 2_电压降计算表(10kV及以下线路)
评论
0/150
提交评论