




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市淮阳一中2024届高一上数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图象过点,则函数的值域是()A. B.C. D.2.已知集合,,则()A. B.C. D.3.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.24.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.5.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至多有1人投中的概率为()A. B.C. D.6.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.7.函数的定义域是()A. B.C. D.(0,4)8.已知函数在[-2,1]上具有单调性,则实数k的取值范围是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤49.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.120010.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.12.已知函数,设,,若成立,则实数的最大值是_______13.若,且,则的值为__________14.已知函数,若方程有四个不同的实根,满足,则值为__________.15.若“”是真命题,则实数的最小值为_____________.16.已知点,,则以线段为直径的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数图象经过点.(1)求幂函数的解析式;(2)试求满足的实数a的取值范围.18.某公司为了解宿州市用户对其产品的满意度,从宿州市,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图(如图)和地区的用户满意度评分的频数分布表(如表1)满意度评分频数2814106表1满意度评分低于70分满意度等级不满意满意非常满意表2(1)求图中的值,并分别求出,两地区样本用户满意度评分低于70分的频率(2)根据用户满意度评分,将用户的满意度分为三个等级(如表2),将频率看作概率,从,两地用户中各随机抽查1名用户进行调查,求至少有一名用户评分满意度等级为“满意”或“非常满意”的概率.19.已知向量,,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.20.已知定义域为的函数是奇函数.(1)求的解析式;(2)若恒成立,求实数的取值范围.21.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【题目详解】设,代入点得,则,令,函数的值域是.故选:C.2、D【解题分析】先求出集合B,再求出两集合的交集即可【题目详解】由,得,所以,因为,所以,故选:D3、D【解题分析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【题目详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【题目点拨】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题4、B【解题分析】构造函数,通过表格判断,判断零点所在区间,即得结果.【题目详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.5、C【解题分析】根据题意,列出所有可能,结合古典概率,即可求解.【题目详解】甲、乙、丙3人投中与否的所有情况为:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8种,其中至多有1人投中的有4种,故所求概率为故选:C.6、C【解题分析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项7、C【解题分析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【题目详解】由,故选:C8、C【解题分析】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【题目详解】函数对称轴为,要使在区间[-2,1]上具有单调性,则或,∴或综上所述的范围是:k≤-8或k≥4.故选:C.9、C【解题分析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【题目详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C10、A【解题分析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解题分析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【题目详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,12、【解题分析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【题目详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:13、【解题分析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.14、11【解题分析】画出函数图像,利用对数运算及二次函数的对称性可得答案.【题目详解】函数的图像如图:若方程有四个不同的实根,满足,则必有,得,.故答案为:11.15、1【解题分析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.16、【解题分析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)把点的坐标代入函数解析式求出的值,即可写出的解析式;(2)根据在定义域上的单调性,把不等式化为关于的不等式组,求出解集即可【题目详解】(1)幂函数的图象经过点,,解得,幂函数;(2)由(1)知在定义域上单调递增,则不等式可化为解得,实数a的取值范围是.【题目点拨】本题考查了幂函数的定义与应用问题,属于容易题18、(1);地区样本用户满意度评分低于70分的频率为;地区样本用户满意度评分低于70分的频率为(2)【解题分析】(1)由频率和等于1计算可求得,进而计算低于70分的频率即可得出结果.(2)由(1)可知,记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则,由对立事件的概率公式计算即可得出结果.【小问1详解】根据地区的频率直方图可得,解得所以地区样本用户满意度评分低于70分的频率为地区样本用户满意度评分低于70分的频率为【小问2详解】根据用样本频率可以估计总体的频率,可以记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则易知事件和事件相互独立,则事件和事件相互独立,记事件“至少有一名用户评分满意度等级为“满意”或“非常满意””为事件所以故至少有一名用户评分满意度等级为“满意”或“非常满意”的概率为19、(1),(2)【解题分析】(1)化简即得;(2)设与的夹角为,求出,再求函数的最值得解.【题目详解】(1)由已知.,,,.(2)设与的夹角为,则,,当即时,取到最小值为.又,与夹角的最大值为.【题目点拨】本题主要考查向量的数量积运算,考查向量夹角的计算和函数最值的求解,意在考查学生对这些知识的理解掌握水平和计算能力.20、(1);(2).【解题分析】(1)由是奇函数可得,从而可求得值,即可求得的解析式;(2)由复合函数的单调性判断在上单调递减,结合函数的奇偶性将不等式恒成立问题转化为,令,利用二次函数的性质求得的最大值,即可求得的取值范围【题目详解】(1)因为函数为奇函数,所以,即,所以,所以,可得,函数.(2)由(1)知所以在上单调递减.由,得,因为函数是奇函数,所以,所以,整理得,设,,则,当时,有最大值,最大值为.所以,即.【题目点拨】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.21、(1)见解析;(2)45°.【解题分析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【题目详解】(I)证明:以D点为原点,分别以直线DA、D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人工作效率统计表格模板(销售人员)
- 全等三角形的判定-角边角课件
- 分数与除法的关系
- 医院临床医院感染管理小组工作手册
- 黄蓝扁平风入职培训模板
- 领导力发展领导团队的艺术
- 音乐节活动的视觉艺术颜色设计与流行元素融合
- 顾客情感在新零售中的影响与策略
- 非遗文化在小学德育课程中的融入与实践
- 顾客体验为核心的新零售办公用品营销
- 第六章神经系统
- 医疗不良事件报告表
- 国开期末考试《建筑制图基础》机考试题及答案(第D-1套)
- SA8000-2014社会责任绩效委员会SPT组织架构、职责和定期检讨及评审会议记录
- 材料加工新技术与新工艺112课件
- 国开作业科研人员TRIZ技术创新方法应用培训-单元测验1(确定项目+描述项目)76参考(含答案)
- 企业安全生产网格化管理体系图空白
- 焊接热处理工艺卡
- 百日咳临床研究进展PPT医学课件
- 大型钢网架整体提升施工工法
- Q∕GDW 12176-2021 反窃电监测终端技术规范
评论
0/150
提交评论