2024届甘肃省甘谷县第一中学高一上数学期末调研试题含解析_第1页
2024届甘肃省甘谷县第一中学高一上数学期末调研试题含解析_第2页
2024届甘肃省甘谷县第一中学高一上数学期末调研试题含解析_第3页
2024届甘肃省甘谷县第一中学高一上数学期末调研试题含解析_第4页
2024届甘肃省甘谷县第一中学高一上数学期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省甘谷县第一中学高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上具有单调性,则k的取值范围是()A. B.C. D.2.函数f(x)=-x+tanx(<x<)的图象大致为()A. B.C. D.3.函数f(x)=lnx+3x-4的零点所在的区间为()A. B.C. D.4.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是A. B.C. D.5.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为A. B.C. D.6.对于空间中的直线,以及平面,,下列说法正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则7.已知函数是定义在上的奇函数,,且,则()A. B.C. D.8.已知函数是定义在上的奇函数,对任意的都有,当时,,则()A. B.C. D.9.满足的集合的个数为()A. B.C. D.10.学校操场上的铅球投郑落球区是一个半径为米的扇形,并且沿着扇形的弧是长度为约米的防护栏,则扇形弧所对的圆心角的大小约为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______12.已知函数(,)的部分图象如图所示,则的值为13.某房屋开发公司用14400万元购得一块土地,该地可以建造每层的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层整幢楼房每平方米建筑费用提高640元.已知建筑5层楼房时,每平方米建筑费用为8000元,公司打算造一幢高于5层的楼房,为了使该楼房每平米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成____________层,此时,该楼房每平方米的平均综合费用最低为____________元14.已知角的终边过点,则______15.若一个扇形的周长为,圆心角为2弧度,则该扇形的面积为__________16.如果对任意实数x总成立,那么a的取值范围是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的图象关于直线x=对称,且,求函数的单调递增区间.(2)在(1)的条件下,当时,函数有且只有一个零点,求实数b的取值范围.18.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值19.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前一天观测得到该微生物的群落单位数量分别为8,14,26.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型:①;②,其中且.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测得到的群落单位数量分别为50和98,请从两个函数模型中选出更合适的一个,并预计从第几天开始该微生物的群落单位数量超过500.20.已知集合,(1)当时,求;21.已知函数,其中.(1)若函数的周期为,求函数在上的值域;(2)若在区间上为增函数,求的最大值,并探究此时函数的零点个数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由函数,求得对称轴的方程为,结合题意,得到或,即可求解.【题目详解】由题意,函数,可得对称轴的方程为,要使得函数在上具有单调性,所以或,解得或故选:C.2、D【解题分析】利用函数的奇偶性排除部分选项,再利用特殊值判断.【题目详解】因为,所以是奇函数,排除BC,又因为,排除A,故选:D3、B【解题分析】根据函数零点的判定定理可得函数的零点所在的区间【题目详解】解:函数在其定义域上单调递增,(2),(1),(2)(1)根据函数零点的判定定理可得函数的零点所在的区间是,故选【题目点拨】本题考查求函数的值及函数零点的判定定理,属于基础题4、B【解题分析】要取得最小值,则与共线且反向即位于的中线上,中线长为设,则则当时,取最小值,故选第II卷(非选择题5、A【解题分析】所求的全面积之比为:,故选A.6、D【解题分析】根据空间直线和平面的位置关系对四个选项逐一排除,由此确定正确的选项【题目详解】对于A选项,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,的夹角不一定为90°,故C错误;因为,故,因为,故,故D正确,故选D.【题目点拨】本小题主要考查空间两条直线的位置关系,考查直线和平面、平面和平面位置关系的判断,属于基础题.7、C【解题分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【题目详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C8、C【解题分析】由可推出,可得周期,再利用函数的周期性与奇偶性化简,代入解析式计算.【题目详解】因为,所以,故周期为,又函数是定义在上的奇函数,当时,,所以故选:C.9、B【解题分析】列举出符合条件的集合,即可得出答案.【题目详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【题目点拨】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.10、A【解题分析】直接由弧长半径圆心角的公式求解即可.【题目详解】根据条件得:扇形半径为10,弧长为6,所以圆心角为:.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【题目详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【题目点拨】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.12、【解题分析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;13、①.15②.24000【解题分析】设公司应该把楼建成层,可知每平方米的购地费用,已知建筑5层楼房时,每平方米建筑费用为8000元,从中可得出建层的每平方米的建筑费用,然后列出式子求得其最小值,从而可求得答案【题目详解】设公司应该把楼建成层,则由题意得每平方米购地费用为(元),每平方米的建筑费用为(元),所以每平方米的平均综合费用为,当且仅当,即时取等号,所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,故答案为:15,2400014、【解题分析】根据三角函数的定义求出r即可.【题目详解】角的终边过点,,则,故答案为【题目点拨】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.15、4【解题分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积【题目详解】设扇形的半径为:R,所以2R+2R=8,所以R=2,扇形的弧长为:4,半径为2,扇形的面积为:4(cm2)故答案为4【题目点拨】本题是基础题,考查扇形的面积公式的应用,考查计算能力16、【解题分析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【题目详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】(1)先求得函数的解析式,再整体代入法去求函数单调递增区间即可;(2)依据函数的单调性及零点个数列不等式组即可求得实数b的取值范围.【小问1详解】由,可得又函数的图象关于直线x=对称,则,则故由,可得则函数的单调递增区间为【小问2详解】由(1)可知当时,,由得,由得则函数在上单调递增,在上单调递减,由函数有且只有一个零点,可得或,解得或18、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解题分析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.19、(1)函数模型①,函数模型②(2)函数模型②更合适,从第8天开始该微生物的群落单位数量超过500【解题分析】(1)可通过已知条件给到的数据,分别带入函数模型①和函数模型②,列出方程组求解出参数即可完成求解;(2)将第4天和第5天得到的数据与第(1)问计算出的函数模型①和函数模型②的表达式计算出的第4天和第5天的模拟数据对比,即可做出判断并计算.【小问1详解】对于函数模型①:把及相应y值代入得解得,所以.对于函数模型②:把及相应y值代入得解得,所以.【小问2详解】对于模型①,当时,,当时,,故模型①不符合观测数据;对于模型②,当时,,当时,,符合观测数据,所以函数模型②更合适要使,则,即从第8天开始该微生物的群落单位数量超过500.20、(1)(2)【解题分析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果;(2)分别在和两种情况下,根据交集为空集可构造不等式求得结果.【小问1详解】由题意得,或,,.【小问2详解】,当时,,符合题意,当时,由,得,故a的取值范围为21、(1)(2)最大值为,6个【解题分析】(1)根据正弦的二倍角公式和辅助角公式可得,利用求出,进而求出,结合三角函数的性质即可得出结果;(2)利用三角函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论