版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市遵化市2024届高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的一个零点是()A. B.C. D.2.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)3.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.4.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.5.已知集合,为自然数集,则下列结论正确的是()A. B.C. D.6.已知函数在上是增函数,则的取值范围是()A. B.C. D.7.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°8.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限9.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a10.某校高一年级有180名男生,150名女生,学校想了解高一学生对文史类课程的看法,用分层抽样的方式,从高一年级学生中抽取若干人进行访谈.已知在女生中抽取了30人,则在男生中抽取了()A.18人 B.36人C.45人 D.60人二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.12.已知函数,的部分图象如图所示,其中点A,B分别是函数的图象的一个零点和一个最低点,且点A的横坐标为,,则的值为________.13.已知为角终边上一点,且,则______14.幂函数的图象经过点,则_____________.15.函数的定义域是__________16.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围18.如图所示,四棱锥的底面是边长为1的菱形,,E是CD中点,PA底面ABCD,(I)证明:平面PBE平面PAB;(II)求二面角A—BE—P和的大小19.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.20.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?21.已知函数,其中(1)若的最小值为1,求a的值;(2)若存在,使成立,求a取值范围;(3)已知,在(1)的条件下,若恒成立,求m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【题目详解】解:令函数,则,则,当时,.故选:B2、B【解题分析】先求出集合A,B,再求两集合的交集即可【题目详解】解:由,得,所以,由于,所以,所以,所以,故选:B3、A【解题分析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【题目详解】由得,∴.故选:A.4、B【解题分析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【题目详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.5、C【解题分析】由题设可得,结合集合与集合、元素与集合的关系判断各选项的正误即可.【题目详解】由题设,,而为自然数集,则,且,所以,,故A、B、D错误,C正确.故选:C6、C【解题分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【题目详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键7、A【解题分析】由诱导公式计算出函数值后判断详解】,,,故选:A8、B【解题分析】应用诱导公式可得,,进而判断角的终边所在象限.【题目详解】由题设,,,所以角的终边在第二象限.故选:B9、C【解题分析】分别求出的范围即可比较.【题目详解】,,,,,.故选:C.10、B【解题分析】先计算出抽样比,即可计算出男生中抽取了多少人.【题目详解】解:女生一共有150名女生抽取了30人,故抽样比为:,抽取的男生人数为:.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解题分析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【题目详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.12、##【解题分析】利用条件可得,进而利用正弦函数的图象的性质可得,再利用正弦函数的性质即求.【题目详解】由题知,设,则,∴,∴,∴,将点代入,解得,又,∴.故答案为:.13、##【解题分析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【题目详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.14、【解题分析】先代入点的坐标求出幂函数,再计算即可.【题目详解】幂函数的图象经过点,设,,解得故,所以.故答案为:.15、【解题分析】要使函数有意义,则,解得,函数的定义域是,故答案为.16、(1)(3)【解题分析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【题目详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【题目点拨】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)求出集合A,B,根据集合的补集、交集运算求解即可;(2)由必要条件转化为集合间的包含关系,建立不等式求解即可.【小问1详解】由,解得或,所以当时,由,即,解得,所以.所以小问2详解】由(1)知,由,即,解得,所以因为“”是“”的必要条件,所以.所以,解得所以实数的取值范围是18、(I)同解析(II)二面角的大小为【解题分析】解:解法一(I)如图所示,连结由是菱形且知,是等边三角形.因为E是CD的中点,所以又所以又因为PA平面ABCD,平面ABCD,所以而因此平面PAB.又平面PBE,所以平面PBE平面PAB.(II)由(I)知,平面PAB,平面PAB,所以又所以是二面角的平面角在中,故二面角的大小为解法二:如图所示,以A为原点,建立空间直角坐标系则相关各点的坐标分别是:(I)因为平面PAB的一个法向量是所以和共线.从而平面PAB.又因为平面PBE,所以平面PBE平面PAB.(II)易知设是平面PBE的一个法向量,则由得所以故可取而平面ABE的一个法向量是于是,故二面角的大小为19、(1)(2)最大值为,最小值为【解题分析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.20、(1);(2)上述设计方案是不会超出班级预算【解题分析】(1)过点O作,垂足为H,用表示出OH和PH,从而可得铜条长度和正方形的面积,进而得出函数式;(2)利用同角三角函数的关系和二次函数的性质求出预算的最大值即可得出结论【题目详解】(1)过点O作,垂足为H,则,,正方形ABCD的中心在展板圆心,铜条长为相等,每根铜条长,,展板所需总费用为(2),当时等号成立.上述设计方案是不会超出班级预算【题目点拨】本题考查了函数应用,三角函数恒等变换与求值,属于中档题21、(1)5(2)(3)【解题分析】(1)采用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度智能机器人购买合同
- 二零二四年度国际危险品货物海运合同2篇
- 二零二四年影视制作公司拍摄合作合同2篇
- 2024年版水体租赁经营合同3篇
- 2024年图书购买合同3篇
- 2024年企业总经理职务任命书2篇
- 二零二四年度碳交易市场参与合同2篇
- 2024版技术服务合同范本3篇
- 2024年旅游景区商铺经营合同3篇
- 大数据驱动下高校教师身份与教学角色转型的策略探讨
- 2024屠宰场猪附件承包合同范本
- 鲁教版九年级化学第一单元《步入化学殿堂》(同步教学设计)
- 医疗器械进货查验记录制度
- GB/T 15579.1-2024弧焊设备第1部分:焊接电源
- 对公客户综合金融服务方案设计
- 山东省烟台市牟平区(五四制)2023-2024学年九年级下学期期中考试数学试题
- 四年级上册语文期末复习重点知识
- 2023年医院收费员考试题题库及参考答案
- 4M变更管理(培训)
- 【中学数学中不等式问题的求解方法浅论9100字(论文)】
- (正式版)YST 888-2024 废电线电缆回收技术规范
评论
0/150
提交评论