版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省六盘水市六枝特区七中高一数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,的斜二测直观图为等腰,其中,则原的面积为()A.2 B.4C. D.2.设则()A. B.C. D.3.若都是锐角,且,,则的值是A. B.C. D.4.点关于直线的对称点是A. B.C. D.5.已知集合,,则()A. B.C. D.6.函数是()A.奇函数,且上单调递增 B.奇函数,且在上单调递减C.偶函数,且在上单调递增 D.偶函数,且在上单调递减7.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°8.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆内接四边形是矩形9.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.10.设,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的解集为_____________________________________12.已知函数的图象如图所示,则函数的解析式为__________.13.若函数是奇函数,则__________.14.已知函数,若,不等式恒成立,则的取值范围是___________.15.已知向量,,,则=_____.16.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市3000名市民参加“美丽城市我建设”相关知识初赛,成绩统计如图所示(1)求a的值;(2)估计该市参加考试的3000名市民中,成绩在上的人数;(3)若本次初赛成绩前1500名参加复赛,则进入复赛市民的分数线应当如何制定(结果保留两位小数)18.计算下列各式的值(1);(2)19.已知函数,(1)求函数的最小正周期;(2)求函数的对称中心;(3)当时,求的最大值和最小值.20.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.21.计算:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】首先算出直观图面积,再根据平面图形与直观图面积比为求解即可.【题目详解】因为等腰是一平面图形的直观图,直角边,所以直角三角形的面积是.又因为平面图形与直观图面积比为,所以原平面图形的面积是.故选:D2、D【解题分析】由指数函数、对数函数的单调性,并与0,1比较可得答案【题目详解】由指数、对数函数的性质可知:,,所以有.故选:D3、A【解题分析】由已知得,,故选A.考点:两角和的正弦公式4、A【解题分析】设对称点为,则,则,故选A.5、B【解题分析】直接利用交集运算法则得到答案.【题目详解】,,则故选:【题目点拨】本题考查了交集的运算,属于简单题.6、A【解题分析】根据函数奇偶性和单调性的定义判定函数的性质即可.【题目详解】解:根据题意,函数,有,所以是奇函数,选项C,D错误;设,则有,又由,则,,则,则在上单调递增,选项A正确,选项B错误.故选:A.7、A【解题分析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【题目详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A8、B【解题分析】全称命题的否定特称命题,任意改为存在,把结论否定.【题目详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.9、C【解题分析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【题目详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【题目点拨】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.10、A【解题分析】利用中间量隔开三个值即可.【题目详解】∵,∴,又,∴,故选:A【题目点拨】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题得,解不等式得不等式的解集.【题目详解】由题得,所以.所以不等式的解集为.故答案为【题目点拨】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解题分析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【题目详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.13、【解题分析】根据题意,得到,即可求解.【题目详解】因为是奇函数,可得.故答案为:.14、【解题分析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【题目详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:15、【解题分析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【题目详解】因为向量,,所以则即解得故答案为:【题目点拨】本题考查了向量垂直的坐标关系,属于基础题.16、【解题分析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【题目详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【题目点拨】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1950;(3)进入复赛市民的分数应当大于或等于77.14.【解题分析】(1)根据频率之和为,结合频率分布直方图即可求得;(2)根据(1)中所求,求得成绩在的频率,根据频数计算公式即可求得结果;(3)根据频率分布直方图中位数的求解,结合已知数据,即可求得结果.【小问1详解】依题意,,故.【小问2详解】成绩在[70,90)上的频率为,所以,所求人数为3000×0.65=1950.【小问3详解】依题意,本次初赛成绩前1500名参加复赛,即求该组数据的中位数,因为≈77.14所以,进入复赛市民的分数应当大于或等于77.14.18、(1)8;(2)7.【解题分析】(1)根据指数幂的运算性质计算;(2)根据对数的运算性质计算即可.【小问1详解】原式;【小问2详解】原式=.19、(1)最小正周期(2),(3),【解题分析】(1)利用两角和公式和二倍角公式对函数解析式化简整理,利用周期公式求得函数的最小正周期,利用三角函数图象和性质求得其对称轴方程(2)根据正弦函数的性质计算可得;(3)利用的范围求得的范围,再根据正弦函数的性质求出函数在区间上最大值和最小值【小问1详解】解:即所以的最小正周期为,【小问2详解】解:令,,解得,,所以函数的对称中心为,【小问3详解】解:当时,,所以则当,即时,;当,即时,20、(1)(写出开区间亦可);(2);(3).【解题分析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【题目详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,当且仅当时取“”,所以,所以;(3)由(1)可知,当时,,记,若函数在上的最大值为,则1)当,即时,在上最小值为1,因为图象的对称轴为,所以,解得,符合题意;2)当,即时,在上最大值为1,且恒成立,因为图象是开口向上的抛物线,在的最大值可能是或,若,则,不符合题意,若,则,此时对称轴,由,不合题意0.综上所述,只有符合条件.【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度智能机器人购买合同
- 二零二四年度国际危险品货物海运合同2篇
- 二零二四年影视制作公司拍摄合作合同2篇
- 2024年版水体租赁经营合同3篇
- 2024年图书购买合同3篇
- 2024年企业总经理职务任命书2篇
- 二零二四年度碳交易市场参与合同2篇
- 2024版技术服务合同范本3篇
- 2024年旅游景区商铺经营合同3篇
- 大数据驱动下高校教师身份与教学角色转型的策略探讨
- 创造有趣和富有创意的政务短视频内容
- 中国常见食物营养成分表
- 甲状腺术后健康宣教首页课件
- 姜子牙动漫电影
- 维护社会稳定规定
- 《数学》课程中的杰出思政教学案例(一等奖)
- 小学教育专业职业生涯发展
- 23秋国家开放大学《视觉设计基础》形考任务1-5参考答案
- 2024年黑龙江高中学业水平合格性考试数学试卷试题(含答案详解)
- 德智体美劳五育融合心得体会
- 小学中华传统文化课件
评论
0/150
提交评论