版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市第一中学2024届高一数学第一学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.102.设,且,则()A. B.C. D.3.已知圆锥的底面半径为,当圆锥的体积为时,该圆锥的母线与底面所成角的正弦值为()A. B.C. D.4.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cmC.9cm D.12cm5.方程的实数根所在的区间是()A. B.C. D.6.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.7.两圆和的位置关系是A.相离 B.相交C.内切 D.外切8.使幂函数为偶函数,且在上是减函数的值为()A. B.C. D.29.若xlog34=1,则4x+4–x=A.1 B.2C. D.10.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______12.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.13.已知角的终边经过点,则的值是______.14.已知函数的图像恒过定点,若点也在函数的图像上,则__________15.已知是定义在上的偶函数,并满足:,当,,则___________.16.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,且)(1)若函数的图象过点,求b的值;(2)若函数在区间上的最大值比最小值大,求a的值18.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.19.已知二次函数()若函数在上单调递减,求实数的取值范围()是否存在常数,当时,在值域为区间且?20.如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.(1)求证:BD⊥平面ECD;(2)求D点到面CEB的距离.21.设分别是的边上的点,且,,,若记试用表示.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先求出高一学生的人数,再利用抽样比,即可得到答案;【题目详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A2、C【解题分析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【题目详解】即故选:C【题目点拨】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.3、A【解题分析】首先理解圆锥体中母线与底面所成角的正弦值为它的高与母线的比值,结合圆锥的体积公式及已知条件即可求出正弦值.【题目详解】如图,根据圆锥的性质得底面圆,所以即为母线与底面所成角,设圆锥的高为,则由题意,有,所以,所以母线的长为,则圆锥的母线与底面所成角的正弦值为.故选:A【题目点拨】本题考查了圆锥的体积,线面角的概念,考查运算求解能力,是基础题.本题解题的关键在于根据圆锥的性质得即为母线与底面所成角,再根据几何关系求解.4、C【解题分析】利用扇形弧长公式进行求解.【题目详解】设扇形弧长为lcm,半径为rcm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C5、B【解题分析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.6、B【解题分析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【题目详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B7、B【解题分析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B.8、B【解题分析】根据幂函数的性质确定正确选项.【题目详解】A选项,是奇函数,不符合题意.B选项,为偶函数,且在上是减函数,符合题意.C选项,是非奇非偶函数,不符合题意.D选项,,在上递增,不符合题意.故选:B9、D【解题分析】条件可化为x=log43,运用对数恒等式,即可【题目详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【题目点拨】本题考查对数性质的简单应用,属于基础题目10、D【解题分析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【题目详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【题目点拨】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解题分析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.12、【解题分析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【题目详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【题目点拨】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.13、##【解题分析】根据三角函数定义得到,,进而得到答案.【题目详解】角的终边经过点,,,.故答案为:.14、1【解题分析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可.【题目详解】令可得,此时,据此可知点A的坐标为,点在函数的图像上,故,解得:,函数的解析式为,则.【题目点拨】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力.15、5【解题分析】根据可得周期,再结合偶函数,可将中的转化到内,可得的值.【题目详解】因为,所以,所以,即函数的一个周期为4,所以,又因为是定义在上的偶函数,所以,因当,,所以,所以.故答案为:2.5.16、60°【解题分析】取BC的中点E,则,则即为所求,设棱长为2,则,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)或【解题分析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值.【小问1详解】,解得.【小问2详解】当时,在区间上单调递减,此时,,所以,解得:或0(舍去);当时,在区间上单调递增,此时,,所以,解得:或0(舍去).综上:或18、(1)(2)【解题分析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.19、(1).(2)存在常数,,满足条件【解题分析】(1)结合二次函数的对称轴得到关于实数m的不等式,求解不等式可得实数的取值范围为(2)在区间上是减函数,在区间上是增函数.据此分类讨论:①当时,②当时,③当,综上可知,存在常数,,满足条件试题解析:()∵二次函数的对称轴为,又∵在上单调递减,∴,,即实数的取值范围为()在区间上是减函数,在区间上是增函数①当时,在区间上,最大,最小,∴,即,解得②当时,在区间上,最大,最小,∴,解得③当,在区间上,最大,最小,∴,即,解得或,∴综上可知,存在常数,,满足条件点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析20、(1)见解析;(2)点到平面的距离为【解题分析】(1)根据题意选择,只需证明,根据线面垂直的判定定理,即可证明平面;(2)把点到面的距离,转化为三棱锥的高,利用等体积法,即可求解高试题解析:(1)证明:∵四边形为正方形∴又∵平面平面,平面平面=,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农田灌溉工程施工合同三篇
- 《保护文物》课件
- 带人带心的领导艺术(博商课件)
- 建筑结构检测鉴定技术概述(东锦内部培训课件)pl
- 2024-2025学年年八年级数学人教版下册专题整合复习卷第21章 二次根式复习卷(24年中考题汇编)-
- 《软件技术基础》课件
- 2024-2025学年江苏省淮安市洪泽区西顺河小学等四校联考译林版(三起)五年级上册12月月考英语试卷(原卷版)-A4
- 2024.11.7 高一英语延庆区2024-2025学年第一学期期中试卷 解析版(2)(1)-A4
- 《供应链经营管理》课件
- 2024年浙江省中考英语试卷
- 2024-2025学年新教材高中化学 第2章 分子结构与性质 第1节 共价键说课稿 新人教版选择性必修2
- 中国老年患者术后谵妄防治专家共识2023
- 超星尔雅学习通《微观经济学(浙江大学)》2024章节测试答案
- 国家QC小组成果案例(攻关型)
- 【人教版】《劳动教育》五下 劳动项目八《制作校园提示牌》课件
- 医学教材单孔腹腔镜手术经验分享
- 涉外法律顾问服务合同范本
- 云南省昆明市五华区四2024年数学四上期末监测试题含解析
- 部编版小学四年级语文上册第25课《王戎不取道旁李》课件(共126张课件)
- 中学地理七年级《世界的气候类型》说课稿
- 陪诊免责协议书范本电子版
评论
0/150
提交评论