2024届辽宁省大连市渤海高级中学数学高一上期末检测模拟试题含解析_第1页
2024届辽宁省大连市渤海高级中学数学高一上期末检测模拟试题含解析_第2页
2024届辽宁省大连市渤海高级中学数学高一上期末检测模拟试题含解析_第3页
2024届辽宁省大连市渤海高级中学数学高一上期末检测模拟试题含解析_第4页
2024届辽宁省大连市渤海高级中学数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省大连市渤海高级中学数学高一上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.2.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.3.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减4.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.5.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.6.函数的单调递增区间是()A. B.C. D.7.计算的值为A. B.C. D.8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④9.已知点是角终边上一点,则()A. B.C. D.10.对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是,则称是函数的一个“黄金区间”.如果可是函数的一个“黄金区间“,则的最大值为()A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则12.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.13.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________14.在空间直角坐标系中,点和之间的距离为____________.15.若向量与共线且方向相同,则___________16.若函数与函数的最小正周期相同,则实数______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线,无论为何实数,直线恒过一定点.(1)求点的坐标;(2)若直线过点,且与轴正半轴、轴正半轴围成的三角形面积为4,求直线的方程.18.已知函数=(1)判断的奇偶性;(2)求在的值域19.已知函数(1)求函数的最小正周期和单调递增区间;(2)若在区间上存在唯一的最小值为-2,求实数m的取值范围20.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围21.计算下列各式的值:(1)(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【题目详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D2、D【解题分析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【题目详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【题目点拨】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、D【解题分析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【题目详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.4、B【解题分析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【题目详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.5、C【解题分析】根据三角函数的周期变换和平移变换的原理即可得解.【题目详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.6、C【解题分析】根据诱导公式变性后,利用正弦函数的递减区间可得结果.【题目详解】因为,由,得,所以函数的单调递增区间是.故选:C7、D【解题分析】直接由二倍角的余弦公式,即可得解.【题目详解】由二倍角公式得:,故选D.【题目点拨】本题考查了二倍角的余弦公式,属于基础题.8、D【解题分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【题目详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.9、D【解题分析】利用任意角的三角函数的定义可求得的值,进而可得答案.【题目详解】因为点是角终边上一点,所以,所以.故选:D.10、C【解题分析】根据题意得到在上单调,从而得到为方程的两个同号实数根,然后化简,进而结合根与系数的关系得到答案.【题目详解】由题意,在和上均是增函数,而函数在“黄金区间”上单调,所以或,且在上单调递增,故,即为方程的两个同号实数根,即方程有两个同号的实数根,因为,所以只需要或,又,所以,则当时,有最大值.二、填空题:本大题共6小题,每小题5分,共30分。11、③④【解题分析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.12、【解题分析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果【题目详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.13、【解题分析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.14、【解题分析】利用空间两点间的距离公式求解.【题目详解】由空间直角坐标系中两点间距离公式可得.故答案为:15、2【解题分析】向量共线可得坐标分量之间的关系式,从而求得n.【题目详解】因为向量与共线,所以;由两者方向相同可得.【题目点拨】本题主要考查共线向量的坐标表示,熟记共线向量的充要条件是求解关键.16、【解题分析】求出两个函数的周期,利用周期相等,推出a的值【题目详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【题目点拨】本题是基础题,考查三角函数的周期的求法,考查计算能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)将直线变形为,令,即可解出定点坐标;(2)可设直线为,根据题意可得到面积为,进而解出参数值解析:(1)将直线的方程整理为:,解方程组,得所以定点的坐标为.(2)由题意直线的斜率存在,设为,于是,即,令,得;令,得,于是.解得.所以直线的方程为,即.18、(1)奇函数(2)【解题分析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为19、(1),(2)【解题分析】(1)用诱导公式将函数化为,然后可解;(2)根据m介于第一个最小值点和第二个最小值点之间可解.【小问1详解】所以的最小正周期,由,解得,所以的单调递增区间为.【小问2详解】令,得因为在区间上存在唯一的最小值为-2,所以,,即所以实数m的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论