山东省青岛第三中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第1页
山东省青岛第三中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第2页
山东省青岛第三中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第3页
山东省青岛第三中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第4页
山东省青岛第三中学2024届高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛第三中学2024届高一数学第一学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则A. B.C. D.2.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增3.已知函数,若在上单调递增,则实数的取值范围为()A. B.C. D.4.已知全集,集合,则()A. B.C. D.5.,则A.1 B.2C.26 D.106.设是周期为的奇函数,当时,,则A. B.C. D.7.设,则a,b,c的大小关系是()A. B.C. D.8.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数9.函数的单调递增区间为()A., B.,C., D.,10.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正三棱柱的棱长均为2,则其外接球体积为__________12.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.13.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______14.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.15.幂函数的图像在第___________象限.16.已知集合,,且,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:lg25+lg2•lg50+lg22(2)已知=3,求的值18.已知函数是偶函数.(1)求实数的值;(2)当时,函数存在零点,求实数的取值范围;(3)设函数,若函数与的图像只有一个公共点,求实数的取值范围.19.设集合,,不等式的解集为(1)当a为0时,求集合、;(2)若,求实数的取值范围20.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.21.已知集合,(1)当时,求;(2)若,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质2、B【解题分析】根据给定的对应值表,逐一分析各选项即可判断作答.【题目详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B3、C【解题分析】利用分段函数的单调性列出不等式组,可得实数的取值范围【题目详解】在上单调递增,则解得故选:C【题目点拨】本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错4、B【解题分析】首先确定全集,而后由补集定义可得结果【题目详解】解:,又,.故选B【题目点拨】本题考查了集合的补集,熟练掌握补集的定义是解决本题的关键,属于基础题型.5、B【解题分析】根据题意,由函数的解析式可得,进而计算可得答案.【题目详解】根据题意,,则;故选B.【题目点拨】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.6、A【解题分析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【题目详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【题目点拨】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.7、C【解题分析】比较a、b、c与0和1的大小即可判断它们之间的大小.【题目详解】,,,故故选:C.8、D【解题分析】根据定义分析判断即可.【题目详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.9、C【解题分析】利用正切函数的性质求解.【题目详解】解:令,解得,所以函数的单调递增区间为,,故选:C10、C【解题分析】由题意得:或,故选C.考点:直线平行的充要条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,12、①.②.【解题分析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【题目详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;13、【解题分析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【题目详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【题目点拨】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.14、8100【解题分析】将代入,化简即可得答案.【题目详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.15、【解题分析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【题目详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.16、【解题分析】,是的子集,故.【题目点拨】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)9.【解题分析】(1)利用对数的性质及运算法则直接求解(2)利用平方公式得,x+x﹣1=()2﹣2=7,x2+x﹣2=(x+x﹣1)2﹣2=49﹣2=47,代入求解【题目详解】(1)lg25+lg2•lg50+lg22=lg52+lg2(lg5+1)+lg22=2lg5+lg2•lg5+lg2+lg22=2lg5+lg2+lg2(lg5+lg2)=2(lg5+lg2)=2;(2)由,得,即x+2+x-1=9∴x+x-1=7两边再平方得:x2+2+x-2=49,∴x2+x-2=47∴=【题目点拨】本题考查了有理指数幂的运算,考查了对数式化简求值,属于基础题18、(1)(2)(3)【解题分析】(1)函数是偶函数,所以得出值检验即可;(2),因为时,存在零点,即关于的方程有解,求出的值域即可;(3)因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以,换元,研究二次函数图象及性质即可得出实数的取值范围.【小问1详解】解:因为是上偶函数,所以,即解得,此时,则是偶函数,满足题意,所以.【小问2详解】解:因为,所以因为时,存在零点,即关于的方程有解,令,则因为,所以,所以,所以,实数的取值范围是.【小问3详解】因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以令,得…(*),记,①当时,函数图像开口向上,又因为图像恒过点,方程(*)有一正一负两实根,所以符合题意;②当时,因为,所以只需,解得,方程(*)有两个相等的正实根,所以满足题意,综上,的取值范围是.19、(1),;(2)或【解题分析】(1)根据题意,由可得结合,解不等式可得集合,(2)根据题意,分是否为空集2种情况讨论,求出的取值范围,综合即可得答案【题目详解】解:(1)根据题意,集合,,当时,,,则,(2)根据题意,若,分2种情况讨论:①,当时,即时,,成立;②,当时,即时,,若,必有,解可得,综合可得的取值范围为或【题目点拨】本题考查集合的包含关系的应用,(2)中注意讨论为空集,属于基础题20、(1);(2).【解题分析】(1)根据函数的奇偶性求出的值,结合反函数的概念求出,利用指数函数的性质求出的取值范围即可;(2)由对数函数概念可得,将原问题转化为在恒成立,结合二次函数的性质即可得出结果.【小问1详解】因为为R上的奇函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论