版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省隆尧县联考九年级数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.关于x的一元二次方程x2+bx+c=0的两个实数根分别为﹣2和3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=62.如图,的半径为,圆心到弦的距离为,则的长为()A. B. C. D.3.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为-3和1;④a-2b+c≥0,其中正确的命题是()A.①②③ B.①④ C.①③ D.①③④4.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上5.已知,那么下列等式中,不一定正确的是()A. B. C. D.6.把抛物线先向左平移1个单位,再向上平移个单位后,得抛物线,则的值是()A.-2 B.2 C.8 D.147.4的平方根是()A.2 B.–2 C.±2 D.±8.二次函数的图象的顶点在坐标轴上,则m的值()A.0 B.2 C. D.0或9.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.110.下列函数关系式中,是的反比例函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_____.12.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.13.如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC的面积之比为.14.计算sin60°tan60°-cos45°cos60°的结果为______.15.如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF=______.16.某种植基地2016年蔬菜产量为100吨,2018年蔬菜实际产量为121吨,则蔬菜产量的年平均增长率为____.17.把二次函数变形为的形式为_________.18.当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,则m=_____.三、解答题(共66分)19.(10分)某商店经销一种销售成本为每千克40元的水产品,规定试销期间销售单价不低于成本价.据试销发现,月销量(千克)与销售单价(元)符合一次函数.若该商店获得的月销售利润为元,请回答下列问题:(1)请写出月销售利润与销售单价之间的关系式(关系式化为一般式);(2)在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为多少元?(3)若获利不高于,那么销售单价定为多少元时,月销售利润达到最大?20.(6分)如图,平行四边形中,,过点作于点,现将沿直线翻折至的位置,与交于点.(1)求证:;(2)若,,求的长.21.(6分)如图,在平面直角坐标系中,抛物线与轴交于点,点的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.⑴求这条抛物线对应的函数表达式;⑵当点在第一象限的抛物线上时,求与之间的函数关系式;⑶在⑵的条件下,当时,求的值.22.(8分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)23.(8分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.24.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.25.(10分)如图,是的直径,且,点为外一点,且,分别切于点、两点.与的延长线交于点.(1)求证:;(2)填空:①当__________时,四边形是正方形.②当____________时,为等边三角形.26.(10分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.1.cot65°=0.446)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据一元二次方程根与系数的关系得到﹣2+3=﹣b,﹣2×3=c,即可得到b与c的值.【题目详解】由一元二次方程根与系数的关系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故选:B.【题目点拨】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根满足,是解题的关键.2、D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【题目详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【题目点拨】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.3、C【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x=-1,且过点(1,0),根据对称轴可得抛物线与x轴的另一个交点为(-3,0),把(1,0)代入可对①做出判断;由对称轴为x=-1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断;根据a、c的符号,以及对称轴可对④做出判断;最后综合得出答案.【题目详解】解:由图象可知:抛物线开口向上,对称轴为直线x=-1,过(1,0)点,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;对称轴为直线x=-1,即:整理得,b=2a,因此②不正确;由抛物线的对称性,可知抛物线与x轴的两个交点为(1,0)(-3,0),因此方程ax2+bx+c=0的两根分别为-3和1;故③是正确的;
由a>0,b>0,c<0,且b=2a,则a-2b+c=a-4a+c=-3a+c<0,因此④不正确;
故选:C.【题目点拨】本题考查的是二次函数图象与系数之间的关系,能够根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式是解题的关键.4、B【解题分析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点5、B【分析】根据比例的性质作答.【题目详解】A、由比例的性质得到3y=5x,故本选项不符合题意.
B、根据比例的性质得到x+y=8k(k是正整数),故本选项符合题意.
C、根据合比性质得到,故本选项不符合题意.
D、根据等比性质得到,故本选项不符合题意.
故选:B.【题目点拨】此题考查了比例的性质,解题关键在于需要掌握内项之积等于外项之积、合比性质和等比性质.6、B【分析】将改写成顶点式,然后按照题意将进行平移,写出其平移后的解析式,从而求解.【题目详解】解:由题意可知抛物线先向左平移1个单位,再向上平移个单位∴∴n=2故选:B【题目点拨】本题考查了二次函数图象与几何变换,利用顶点坐标的变化确定函数图象的变化可以使求解更加简便.7、C【分析】根据正数的平方根的求解方法求解即可求得答案.【题目详解】∵(±1)1=4,
∴4的平方根是±1.
故选:C.8、D【解题分析】试题解析:当图象的顶点在x轴上时,∵二次函数的图象的顶点在x轴上,∴二次函数的解析式为:∴m=±2.当图象的顶点在y轴上时,m=0,故选D.9、A【分析】根据极差的概念最大值减去最小值即可求解.【题目详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=1.
故选A.【题目点拨】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.10、C【分析】根据反比例函数的定义即可得出答案.【题目详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【题目点拨】本题考查的是反比例函数的定义:形如的式子,其中k≠0.二、填空题(每小题3分,共24分)11、x1=﹣1或x2=1.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.【题目详解】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点横坐标为1﹣(1﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=1时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=1.故答案为:x1=﹣1或x2=1.【题目点拨】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.12、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.13、3:3.【解题分析】试题解析:∵E、F分别为AB、AC的中点,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考点:3.相似三角形的判定与性质;3.三角形中位线定理..14、1【分析】直接利用特殊角的三角函数值分别代入求出答案.【题目详解】解:原式=1【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.15、【解题分析】试题分析:证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4-x,在Rt△CFE中,由勾股定理得出方程(4-x)2=x2+22,求出x即可.试题解析:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四边形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5-3=2,设CF=x,则EF=DF=4-x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(4-x)2=x2+22,x=,CF=.考点:矩形的性质.16、10%【分析】2016年到2018年是2年的时间,设年增长率为x,可列式100×=121,解出x即可.【题目详解】设平均年增长率为x,可列方程100×=121解得x=10%故本题答案应填10%.【题目点拨】本题考查了一元二次函数的应用问题.17、【分析】利用配方法变形即可.【题目详解】解:故答案为:【题目点拨】本题考查了二次函数的的解析式,熟练掌握配方法是解题的关键.18、﹣1.5或1.【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值.【题目详解】∵当﹣1≤x≤3时,二次函数y=﹣(x﹣m)1+m1﹣1可取到的最大值为3,∴当m≤﹣1时,x=﹣1时,函数取得最大值,即3=﹣(﹣1﹣m)1+m1﹣1,得m=﹣1.5;当﹣1<m<3时,x=m时,函数取得最大值,即3=m1﹣1,得m1=1,m1=﹣1(舍去);当m≥3时,x=3时,函数取得最大值,即3=﹣(3﹣m)1+m1﹣1,得m=(舍去);由上可得,m的值为﹣1.5或1,故答案为:﹣1.5或1.【题目点拨】本题考查了二次函数的最值问题,熟练掌握二次函数的性质,分类讨论是解题的关键.三、解答题(共66分)19、(1)W=﹣10x2+1400x﹣40000;(2)销售单价应定为1元;(3)销售单价定为2元时,月销售利润达到最大.【分析】(1)根据总利润=每千克的利润×月销量,即可求出月销售利润与销售单价之间的关系式,然后化为一般式即可;(2)将=800代入(1)的关系式中,求出x即可;(3)根据获利不高于,即可求出x的取值范围,然后根据二次函数的增减性,即可求出当月销售利润达到最大时,销售单价的定价.【题目详解】解:(1)根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1000x+400x﹣40000=﹣10x2+1400x﹣40000;(2)当W=﹣10x2+1400x﹣40000=8000时,得到x2﹣140x+4800=0,解得:x1=1,x2=80,∵使顾客获得实惠,∴x=1.答:销售单价应定为1元.(3)W=-10x2+1400x﹣40000=-10(x﹣70)2+9000∵获利不得高于70%,即x﹣40≤40×70%,∴x≤2.∵-10<0,对称轴为直线x=70∴当x≤2时,y随x的增大而增大∴当x=2时,W最大=891.答:销售单价定为2元时,月销售利润达到最大.【题目点拨】此题考查的是二次函数是应用,掌握实际问题中的等量关系、二次函数和一元二次方程的关系和利用二次函数的增减性求值是解决此题的关键.20、(1)见解析;(2)【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【题目详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B,∠CGF=∠BAF,∴△FCG∽△FBA,∴,∴∴.(2)∵,∴∠AEB=90°,∵∠B=30°,,∴AE=,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵,∴,∴CG=,∴DG=.【题目点拨】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.21、(1);(2)当时,,当时,;(3)或.【分析】(1)由题意直接根据待定系数法,进行分析计算即可得出函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)由题意根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,即可得出答案.【题目详解】解:(1)由题意得,解得∴这条抛物线对应的函数表达式是.(2)当时,.∴点的坐标是.设直线的函数关系式为.由题意得解得∴直线的函数关系式为.∵PD∥x轴,∴.∴.当时,如图①,.当时,如图②,.(3)当时,,.∵,∴.解得(不合题意,舍去),.当时,,.∵,∴.解得(不合题意,舍去),.综上所述,当时,或.【题目点拨】本题考查二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴直线上点的纵坐标相等得出E点的纵坐标是解题关键;利用PE与DE的关系得出关于m的方程是解题的关键.22、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.【解题分析】(1)如图1中,作DH⊥BE于H.求出DH,BH即可解决问题.(2)解直角三角形求出BE即可解决问题.【题目详解】(1)如图1中,作DH⊥BE于H.在Rt△BDH中,∵∠DHB=90°,BD=4cm,∠ABC=30°,∴DH=BD=2(cm),BH=DH=6(cm),∵AB=CB=20cm,AE=2cm,∴EH=20-2-6=12(cm),∴DE===2(cm).(2)在Rt△BDE中,∵DE=2,BD=4,∠DBE=90°,∴BE==6(cm),∴这个过程中,点E滑动的距离(18-6)cm.【题目点拨】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识.23、(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗.【分析】(1)由题意按照每棵120元进行计算;(2)设设购买了棵树苗,根据单价×数量=总价列方程,求解.【题目详解】解:(1)∵,∴(元),∴答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为元元,∴该中学购买的树苗超过60棵.又∵,∴购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元,此时所需支付的树苗款超过10000元,而,∴该中学购买的树苗不超过100棵.设购买了棵树苗,依题意,得,化简,得,解得(舍去),.答:这所中学购买了80棵树苗.【题目点拨】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.24、(1);(2).【分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库工作总结与计划的重要性
- 徐州工程学院《计算机控制技术》2022-2023学年第一学期期末试卷
- 陶瓷制品订购协议三篇
- 智能物流系统投资合同三篇
- 信阳师范大学《热力学与统计物理》2022-2023学年第一学期期末试卷
- 信阳师范大学《变态心理学》2022-2023学年第一学期期末试卷
- 小班节日文化的教育传承计划
- 手术室主管工作计划
- 汽车燃料运输合同三篇
- 新余学院《编舞技法》2022-2023学年第一学期期末试卷
- 软件运维服务协议合同范本
- 2024市场营销知识竞赛题库及答案(共169题)
- 《科研诚信与学术规范》学习通超星期末考试答案章节答案2024年
- 部编统编版小学道德与法治一年级下册-集体备课记录(表格式)
- 2024年平面设计师技能及理论知识考试题库(附含答案)
- 部编版语文四年级上册第五单元大单元作业设计
- TSHJX 061-2024 上海市域铁路工程施工监测技术规范
- 丰田英二名言及背景资料
- 植物学智慧树知到答案2024年浙江大学
- 肠造口相关知识考核试题
- IGCSE考试练习册附答案
评论
0/150
提交评论