版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?答:使用高斯消去法时,在消元过程中可能出现的情况,这时消去法无法进行;即时主元素,但相对很小时,用其做除数,会导致其它元素数量级的严重增长和舍入误差的扩散,最后也使得计算不准确。因此高斯消去法需要选主元,以保证计算的进行和计算的准确性。当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。计算时一般选择列主元消去法。2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。A需要满足的条件是,顺序主子式(1,2,…,n-1)不为零。3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。平方根法在分解过程中元素的数量级不会增长,切对角元素恒为正数,因此,是一个稳定的算法。5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。向量范数定义见p53,符合3个运算法则。正定性齐次性三角不等式设为向量,则三种常用的向量范数为:(第3章p53,第5章p165)7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(aij)的三种范数||A||1,||A||2,||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。正定条件齐次条件三角不等式相容条件矩阵的算子范数有从定义可知,更容易计算。8、什么是矩阵的条件数?如何判断线性方程组是病态的?答:设为非奇异阵,称数()为矩阵A的条件数当时,方程是病态的。9、满足下面哪个条件可判定矩阵接近奇异?(1)矩阵行列式的值很小。(2)矩阵的范数小。(3)矩阵的范数大。(4)矩阵的条件数小。(5)矩阵的元素绝对值小。接近奇异阵的有(1)、(2)注:矩阵的条件数小说明A是良态矩阵。矩阵的元素绝对值小,不能说明行列式的值小等。3、设为指标为的初等下三角矩阵(除第列对角元以下元素外,和单位阵相同),即求证当时,也是一个指标为k的初等下三角矩阵,其中为初等置换矩阵。4、试推导矩阵的Crout分解A=LU的计算公式,其中L为下三角矩阵,U为单位上三角矩阵。本题不推导。参见书上例题。P147页。5、设,其中为三角矩阵。(1)就U为上及下三角矩阵推导一般的求解公式,并写出算法(2)计算解三角方程组的乘除法次数(3)设为非奇异矩阵,试推导求的计算公式本题考查求解公式的一般方法,可从第n个元素开始,逐步计算n-1,…1时对应的求解公式。解法,略。6、证明:(1)如果是对称正定矩阵,则也是对称正定矩阵(2)如果是对称正定矩阵,则可以唯一地写成,其中是具有正对角元的下三角矩阵均是对称正定矩阵的性质。应予以记住。7、用列主元消去法解线性方程组并求出系数矩阵A的行列式的值使用列主元消去法,有A的行列式为-66方程组的解为X1=1,x2=2,x3=38、用直接三角分解(Doolittle分解)求线性方程组的解本题考查LU分解。解:9、用追赶法解三对角方程组,其中,。解:追赶法实际为LU分解的特殊形式。设U为、单位上三角矩阵。有(1)计算的递推公式(2)解Ly=f(3)解UX=y10、用改进的平方根法解方程组。本题明确要求使用平方根法进行求解。实际考查的LDU分解。见P157。11、下列矩阵能否分解为(其中L为单位下三角阵,U为上三角阵)?若能分解,那么分解是否唯一。,,。LU分解存在的条件一个可逆矩阵可以进行LU分解当且仅当它的所有子式都非零。如果要求其中的L矩阵(或U矩阵)为单位三角矩阵,那么分解是唯一的。同理可知,矩阵的LDU可分解条件也相同,并且总是唯一的。即使矩阵不可逆,LU仍然可能存在。实际上,如果一个秩为k的矩阵的前k个顺序主子式不为零,那么它就可以进行LU分解,但反之则不然。解:因为A的一、二、三阶顺序主子式分别为1,0,-10,所以A不能直接分解为三角阵的乘积,但换行后可以。因为B的一、二、三阶顺序主子式分别为1,0,0,所以B不能分解为三角阵的乘积。因为C的一、二、三阶顺序主子式分别为1,5,1,所以C能够分解为三角阵的乘积,并且分解是唯一的。12、设,计算A的行范数,列范数,2-范数及F-范数。本题考查的是矩阵范数的定义及求法行范数0.6+0.5=1.1列范数0.5+0.3=0.82-范数的计算需要用到特征值,特征值的计算可以使用幂法进行计算,也可以直接求。的最大特征值为0.3690所以2-范数为0.6074F-范数0.842613、求证:(a);(b)。根据定义求证。。14、设且非奇异,又设为上一向量范数,定义。试证明是上向量的一种范数。根据向量范数的定义来证明:要求就有正定性,齐次性,三角不等式等性质。显然,、,从而是上向量的一种范数。15、设为对称正定,定义,试证明是上向量的一种范数。根据向量范数的定义来证明:要求就有正定性,齐次性,三角不等式等性质。显然,16、设A为非奇异矩阵,求证。因为,所以得证17、矩阵第一行乘以一数,成为,证明当时,有最小值。本题考查条件数的计算首先计算A的逆阵,当,取得最小值为2,当取值越大,则最小值为2从而,又当时,。当时,。综上所述,时最小,这时,即。18、设,计算A的条件数由可知,,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆财经学院《非线性编辑》2022-2023学年第一学期期末试卷
- 策略研究和实践研究报告
- 仲恺农业工程学院《织行为学》2021-2022学年第一学期期末试卷
- 玻璃钢电缆管道施工方案
- 重庆财经学院《计算机辅助制图》2023-2024学年第一学期期末试卷
- 五年级数学(小数四则混合运算)计算题专项练习及答案汇编
- 滨州幼儿园施工方案
- 仲恺农业工程学院《软件工程导论》2022-2023学年期末试卷
- 测量光照强度课程设计
- 仲恺农业工程学院《可编程控制器技术》2022-2023学年期末试卷
- 胸腔积液患者病例讨论
- 科研的思路与方法
- 大学生职业生涯规划成长赛道
- 高二上学期日语阅读四篇自测
- 大学生职业生涯规划成长赛道 (第二稿)
- 蓄电池的分类介绍课件
- 人体身体成分健康分析报告
- 人工智能驱动的数字经济发展与应用探索
- 手术室突发事件的紧急处理与应急演练
- 《军事理论》课程标准
- 印刷品类售后服务方案
评论
0/150
提交评论