2024届湖北省宜昌市宜昌中学数学九年级第一学期期末统考模拟试题含解析_第1页
2024届湖北省宜昌市宜昌中学数学九年级第一学期期末统考模拟试题含解析_第2页
2024届湖北省宜昌市宜昌中学数学九年级第一学期期末统考模拟试题含解析_第3页
2024届湖北省宜昌市宜昌中学数学九年级第一学期期末统考模拟试题含解析_第4页
2024届湖北省宜昌市宜昌中学数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省宜昌市宜昌中学数学九年级第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,PA、PB都是⊙O的切线,切点分别为A、B.四边形ACBD内接于⊙O,连接OP则下列结论中错误的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB2.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 B.4+4 C.8﹣4 D.+13.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是”4.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x=3500B.2500(1+x)=3500C.2500(1+x%)=3500D.2500(1+x)+2500(1+x)=35005.如图,在平面直角坐标系中,点、、为反比例函数()上不同的三点,连接、、,过点作轴于点,过点、分别作,垂直轴于点、,与相交于点,记四边形、、的面积分别为,、、,则()A. B. C. D.6.在一个不透明的袋子里装有6个颜色不同的球(除颜色不同外,质地、大小均相同),其中个球为红球,个球为白球,若从该袋子里任意摸出1个球,则摸出的球是白球的概率为()A. B. C. D.7.半径为R的圆内接正六边形的面积是()A.R2 B.R2 C.R2 D.R28.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.9.如图,,,是⊙上的三个点,如果∠°,那么∠的度数为()A. B. C. D.10.将抛物线绕顶点旋转,则旋转后的抛物线的解析式为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,中,,,将斜边绕点逆时针旋转至,连接,则的面积为_______.12.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有_____人.13.已知,是关于的方程的两根,且满足,则的值为_______.14.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.15.计算:______.16.如图,在扇形OAB中,∠AOB=90°,半径OA=1.将扇形OAB沿过点B的直线折叠.点O恰好落在延长线上点D处,折痕交OA于点C,整个阴影部分的面积_____.17.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.18.二次函数图象的开口向__________.三、解答题(共66分)19.(10分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。(1)求李老师第一次摸出的乒乓球代表男生的概率;(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率.20.(6分)如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.21.(6分)已知抛物线y=x2﹣2和x轴交于A,B(点A在点B右边)两点,和y轴交于点C,P为抛物线上的动点.(1)求出A,C的坐标;(2)求动点P到原点O的距离的最小值,并求此时点P的坐标;(3)当点P在x轴下方的抛物线上运动时,过P的直线交x轴于E,若△POE和△POC全等,求此时点P的坐标.22.(8分)有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.23.(8分)2018年非洲猪瘟疫情暴发后,2019年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:2019年12月份猪肉价格比2019年年初上涨了30%,某市民2019年12月3日在某超市购买1千克猪肉花了52元.(1)问:2019年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克39元的猪肉,按2019年12月3日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1320元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?24.(8分)某超市销售一种饮料,每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?25.(10分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.26.(10分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.

参考答案一、选择题(每小题3分,共30分)1、D【分析】连接,,根据PA、PB都是⊙O的切线,切点分别为A、B,得到,,所以A,C正确;根据得到,即,所以B正确;据此可得答案.【题目详解】解:如图示,连接,,、是的切线,,,所以A,C正确;又∵,,∴在四边形APBO中,,即,所以B正确;∵D为任意一点,无法证明,故D不正确;故选:D.【题目点拨】本题考查了圆心角和圆周角,圆的切线的性质和切线长定理,熟悉相关性质是解题的关键.2、A【解题分析】试题分析:∵四边形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,则S△ACD=AD•CD=×2×2=2;AC=AD=2,则EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME•EC=(2﹣2)2=6﹣1,∴阴影部分的面积=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故选A.考点:正方形的性质.3、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【题目详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为.为可能事件.D正确.三角形内角和是180°.故选:D.【题目点拨】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.4、B【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【题目详解】设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【题目点拨】本题考查一元二次方程的应用--求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).5、C【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可得到结论.【题目详解】解:∵点A、B、C为反比例函数(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,

∴S3=k,S△BOE=S△COF=k,∵S△BOE-SOGF=S△CDF-S△OGF,

∴S1=S2<S3,∴,故选:C.【题目点拨】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.6、D【分析】让白球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共有6个球,白球有4个,

所以从布袋里任意摸出1个球,摸到白球的概率为:.

故选:D.【题目点拨】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.7、C【分析】连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH的长,利用三角形的面积公式即可求出△ODE的面积,进而可得出正六边形ABCDEF的面积.【题目详解】解:如图示,连接OE、OD,

∵六边形ABCDEF是正六边形,

∴∠DEF=120°,

∴∠OED=60°,

∵OE=OD=R,

∴△ODE是等边三角形,

作OH⊥ED,则∴∴故选:C.【题目点拨】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键.8、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【题目详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【题目点拨】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.9、C【分析】在弧AB上取一点D,连接AD,BD,利用圆周角定理可知,再利用圆内接四边形的性质即可求出∠的度数.【题目详解】如图,在弧AB上取一点D,连接AD,BD,则∴故选C【题目点拨】本题主要考查圆周角定理及圆内接四边形的性质,掌握圆周角定理及圆内接四边形的性质是解题的关键.10、C【分析】根据抛物线,可得顶点坐标为(0,1),开口向上,抛物线绕顶点旋转后,开口向下,顶点和抛物线形状没有改变,即可得到答案.【题目详解】∵抛物线的顶点坐标为(0,1),开口向上,∴抛物线绕顶点旋转后所得的抛物线顶点坐标为(0,1),开口向下,∴旋转后的抛物线的解析式为:.故选C.【题目点拨】本题主要考查抛物线的旋转变换,掌握抛物线的顶点式与旋转变换是解题的关键.二、填空题(每小题3分,共24分)11、8【分析】过点B'作B'E⊥AC于点E,由题意可证△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面积.【题目详解】解:如图:过点B'作B'E⊥AC于点E∵旋转∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案为:.【题目点拨】本题考查了旋转的性质,全等三角形的判定和性质,利用旋转的性质解决问题是本题的关键.12、1【分析】设该群的人数是x人,则每个人要发其他(x﹣1)张红包,则共有x(x﹣1)张红包,等于156个,由此可列方程.【题目详解】设该群共有x人,依题意有:x(x﹣1)=156解得:x=﹣12(舍去)或x=1.故答案为1.【题目点拨】本题考查的是一元二次方程的应用,正确找准等量关系列方程即可,比较简单.13、5【分析】由韦达定理得,,将其代入即可求得k的值.【题目详解】解:、是方程的两个根,,.,.故答案为:.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握韦达定理与方程的解的定义.14、.【分析】分别计算出阴影部分面积和非阴影面积,即可求出掷中阴影部分的概率.【题目详解】∵大圆半径为3,小圆半径为2,∴S大圆(m2),S小圆(m2),S圆环=9π﹣4π=5π(m2),∴掷中阴影部分的概率是.故答案为:.【题目点拨】本题考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.15、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【题目详解】解:.故答案为:【题目点拨】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.16、9π﹣12.【题目详解】解:连接OD交BC于点E,∠AOB=90°,∴扇形的面积==9π,由翻折的性质可知:OE=DE=3,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,在Rt△COB中,CO=2,∴△COB的面积=1,∴阴影部分的面积为=9π﹣12.故答案为9π﹣12.【题目点拨】本题考查翻折变换(折叠问题)及扇形面积的计算,掌握图形之间的面积关系是本题的解题关键.17、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【题目详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【题目点拨】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.18、下【分析】根据二次函数的二次项系数即可判断抛物线的开口方向.【题目详解】解:∵,二次项系数a=-6,∴抛物线开口向下,故答案为:下.【题目点拨】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.三、解答题(共66分)19、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.【分析】(1)共3个球,第一次摸出的乒乓球代表男生的有1种,即可利用概率公式求得结果;(2)列树状图即可解答.【题目详解】(1)共有3个球,第一次摸出的乒乓球代表男生的有1种情况,∴第一次摸出的乒乓球代表男生的概率为;(2)树状图如下:共有6种等可能的情况,其中恰好选定一名男生和一名女生参赛的有4种,∴P(恰好选定一名男生和一名女生参赛)=.【题目点拨】此题考查事件概率的求法,简单事件的概率可直接利用公式计算,复杂事件的概率可利用列树状图解答,解题中注意事件是属于“放回”或是“不放回”事件.20、(1)证明见解析;(2)4.【分析】(1)易证∠AGD=∠B,根据∠ADG=∠BEF=90°,即可证明△ADG∽△FEB;(2)相似三角形的性质解答即可.【题目详解】(1)证明:∵∠C=90°,

∴∠A+∠B=90°,

∵四边形DEFG是矩形,

∴∠GDE=∠FED=90°,

∴∠GDA+∠FEB=90°,

∴∠A+∠AGD=90°,

∴∠B=∠AGD,

且∠GDA=∠FEB=90°,

∴△ADG∽△FEB.(2)解:∵△ADG∽△FEB,

∴,∵AD=2GD,∴,∴.【题目点拨】本题考查了相似三角形的判定与性质,求证△ADG∽△FEB是解题的关键.21、(1)A(﹣,0),点C的坐标为(0,﹣2);(2)最小值为,点P的坐标为(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).【分析】(1)令y=0,解方程求出x的值,即可得到点A、B的坐标,令x=0求出y的值,即可得到点C的坐标;(2)根据二次函数图象上点的坐标特征设点P的坐标为(x,x2﹣2),利用勾股定理列式求出OP2,再根据二次函数的最值问题解答;(3)根据二次函数的增减性,点P在第三四象限时,OP≠1,从而判断出OC与OE是对应边,然后确定出点E与点A或点B重合,再根据全等三角形对应角相等可得∠POC=∠POE,然后根据第三、四象限角平分线上的点到角的两边距离相等的坐标特征利用抛物线解析式求解即可.【题目详解】解:(1)令y=0,则x2﹣2=0,解得x=±,∵点A在点B右边,∴A(,0),令x=0,则y=﹣2,∴点C的坐标为(0,﹣2);(2)∵P为抛物线y=x2﹣2上的动点,∴设点P的坐标为(x,x2﹣2),则OP2=x2+(x2﹣2)2=x4﹣3x2+4=(x2﹣)2+,∴当x2=,即x=±时,OP2最小,OP的值也最小,最小值为,此时,点P的坐标为(,﹣)或(﹣,﹣);(3)∵OP2=(x2﹣)2+,∴点P在第三四象限时,OP≠1,∵△POE和△POC全等,∴OC与OE是对应边,∴∠POC=∠POE,∴点P在第三、四象限角平分线上,①点P在第三象限角平分线上时,y=x,∴x2﹣2=x,解得x1=﹣1,x2=2(舍去),此时,点P(﹣1,﹣1);②点P在第四象限角平分线上时,y=﹣x,∴x2﹣2=﹣x,解得x1=1,x2=﹣2(舍去),此时,点P(1,1),综上所述,P(﹣1,﹣1)或(1,1)时△POE和△POC全等.【题目点拨】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点的求解、二次函数的最值问题、全等三角形的性质、难点在于判断出(3)点P在第三、四象限角平分线上.22、(1);(2)见解析【分析】(1)直接根据概率公式计算即可.

(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可.【题目详解】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为;(2)游戏不公平,理由如下:列表得:共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即∴(两张牌面图形既是轴对称图形又是中心对称图形),∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.23、(3)今年年初猪肉的价格为每千克3元;(3)猪肉的售价应该下降3元.【分析】(3)设3039年年初猪肉的价格为每千克x元,根据题意列出方程,解方程即可;(3)根据题意利用利润=每千克的利润×数量列出方程,解方程即可解决问题.【题目详解】解:(3)设今年年初猪肉的价格为每千克x元,依题意,得:(3+30%)x=53,解得:x=3.答:今年年初猪肉的价格为每千克3元.(3)设猪肉的售价应该下降y元,则每日可售出(300+30y)千克,依题意,得:(53﹣39﹣y)(300+30y)=3330,整理,得:y3﹣3y+3=0,解得:y3=3,y3=3.∵让顾客得到实惠,∴y=3.答:猪肉的售价应该下降3元.【题目点拨】本题主要考查一元一次方程及一元二次方程的应用,读懂题意列出方程是解题的关键.24、(1);(2)元或元;(3)元时利润最大,最大利润元【分析】(1)当每瓶售价为元时,每瓶售价增加1元,日均销售量减少80瓶,即可求解.(2)设每瓶售价为x元,根据题意表示出每瓶利润,日销售量,根据等量关系列方程解答即可.(3)设每瓶售价为a元,日均总利润为y元,求出y关于a的函数表达式,配方即可求解.【题目详解】(1)当每瓶售价为元时,每瓶售价增加1元,日均销售量减少80瓶,560-80=480瓶故答案为:480(2)设每瓶售价为x元时,所得日均总利润为元,根据题意得:解得:x1=12,x2=14答:当每瓶的售价为12元或14元时,所得日均总利润为元.(3)设每瓶售价为a元,日均总利润为y元,根据题意得:答:每瓶售价为13元时利润最大,最大利润1280元.【题目点拨】本题考查的是一元二次方程及二次函数的利润问题,解题关键在于对利润问题中等量关系的把握,由于计算量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论