版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市实验中学2024届数学九上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次2.若点与点关于原点成中心对称,则的值是()A.1 B.3 C.5 D.73.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根4.如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为()A.2 B. C.4 D.5.将抛物线向右平移个单位后,得到的抛物线的解析式是()A. B. C. D.6.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.47.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,48.如图是一根空心方管,它的俯视图是()A. B. C. D.9.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B. C. D.10.如果一个正多边形的中心角为60°,那么这个正多边形的边数是()A.4 B.5 C.6 D.7二、填空题(每小题3分,共24分)11.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.12.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.13.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.14.如图,函数y=的图象所在坐标系的原点是_______.15.如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.16.如果记,表示当时的值,即;表示当时的值,即;表示当时,的值,即;那么______________.17.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___18.如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.三、解答题(共66分)19.(10分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.20.(6分)如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,则DE=________.21.(6分)如图是某一蓄水池每小时的排水量/与排完水池中的水所用时间之间的函数关系的图像.(1)请你根据图像提供的信息写出此函数的函数关系式;(2)若要6h排完水池中的水,那么每小时的排水量应该是多少?22.(8分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组所对应的码放的几何体是______________;A.B.C.D.(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______,______),此时求出的这个几何体表面积的大小为____________(缝隙不计)23.(8分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.24.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.25.(10分)如图,在中,于,,,,分别是,的中点.(1)求证:,;(2)连接,若,求的长.26.(10分)如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.(1)请通过计算说明小明的猜想是否正确;(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据频数,频率及用频率估计概率即可得到答案.【题目详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【题目点拨】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.2、C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】解:∵点与点关于原点对称,∴,,解得:,,则故选C.【题目点拨】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、D【分析】连接OB、OC,证明△OBC是等边三角形,得出即可求解.【题目详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴,故选:D.【题目点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.5、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.【题目详解】解:将抛物线向右平移个单位后,得到的抛物线的解析式.故选:B【题目点拨】本题考查的是抛物线的平移.抛物线的平移可根据平移规律来写,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.6、C【解题分析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【题目详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【题目点拨】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.7、A【分析】根据众数和中位数的定义求解可得.【题目详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是=19(岁),故选:A.【题目点拨】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.8、B【分析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.【题目详解】如图所示:俯视图应该是故选:B.【题目点拨】本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.9、C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【题目详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【题目点拨】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.10、C【解题分析】试题解析:这个多边形的边数为:故选C.二、填空题(每小题3分,共24分)11、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上AC的长即可求得树AB的高.【题目详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案为:6.5【题目点拨】本题考查相似三角形的应用,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.12、1.【解题分析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.13、1:1.【解题分析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.14、M【分析】由函数解析式可知函数关于y轴对称,即可求解;【题目详解】解:由已知可知函数y=的图象关于y轴对称,所以点M是原点;
故答案为:M.【题目点拨】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.15、【分析】根据反比例函数关系式与面积的关系得S△COE=S△BOD=3,由C是OA的中点得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面积比是相似比的平方得,求出△ABC的面积,从而求出△AOD的面积,得出结论.【题目详解】过C作CE⊥OB于E,∵点C、D在双曲线(x>0)上,∴S△COE=S△BOD,∵S△OBD=3,∴S△COE=3,∵CE∥AB,∴△COE∽△AOB,∴,∵C是OA的中点,∴OA=2OC,∴,∴S△AOB=4×3=12,∴S△AOD=S△AOB−S△BOD=12−3=9,∵C是OA的中点,∴S△ACD=S△COD,∴S△COD=,故答案为.【题目点拨】本题考查了反比例函数系数k的几何意义,即在反比例函数的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,所成的三角形的面积是定值|k|,且保持不变.16、【分析】观察前几个数,,,,依此规律即可求解.【题目详解】∵,,∴,∵,,∴,,∴,∵,∴2019个1.故答案为:.【题目点拨】此题考查了分式的加减运算法则.解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.17、1【分析】根据AE:ED=1:2,得到BC=3AE,证明△DEF∽△BCF,得到,求出FC,即可求出CE.【题目详解】解:∵AE:ED=1:2,∴DE=2AE,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案为:1.【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键.18、【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【题目详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【题目点拨】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.三、解答题(共66分)19、(1)A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)S△ABC=1.【解题分析】试题分析:(1)根据反比例函数与一次函数的交点问题得到方程组,然后解方程组即可得到A、B两点的坐标;(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算.试题解析:(1)根据题意得,解方程组得或,所以A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)把y=0代入y=﹣x+2得﹣x+2=0,解得x=2,所以D点坐标为(2,0),因为C、D两点关于y轴对称,所以C点坐标为(﹣2,0),所以S△ABC=S△ACD+S△BCD=×(2+2)×3+×(2+2)×1=1.考点:反比例函数与一次函数的交点问题.20、(1)见解析;(2)见解析;(3).【分析】(1)连接AD,由直径所对的圆周角度数及中点可证AD是BC的垂直平分线,根据线段垂直平分线的性质可得结论;(2)连接OD,由中位线的性质可得OD∥AC,由平行的性质与切线的判定可证;(3)易知是等边三角形,由等边三角形的性质可得CB长及度数,利用直角三角形30度角的性质及勾股定理可得结果.【题目详解】(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分线∴AB=AC.(2)连接OD.∵DE⊥AC,∴∠CED=90°.∵O为AB中点,D为BC中点,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切线.(3)由(1)得是等边三角形在中,根据勾股定理得【题目点拨】本题考查了圆与三角形的综合,涉及的知识点主要有圆的切线的判定、圆周角定理的推论、垂直平分线的性质、等边三角形与直角三角形的性质,灵活的将图形与已知条件相结合是解题的关键.21、(1);(2)8m3【分析】(1)根据函数图象为双曲线的一支,可设,又知(12,4)在此函数图象上,利用待定系数法求出函数的解析式;(2)把t=6代入函数的解析式即可求出每小时的排水量.【题目详解】(1)根据函数图象为双曲线的一支,可设,又知(12,4)在此函数图象上,则把(12,4)代入解析式得:,解得k=48,则函数关系式为:;(2)把t=6代入得:,则每小时的排水量应该是8m3.【题目点拨】主要考查了反比例函数的应用,解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.22、(1)B;(2)2,3,2,1;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2【分析】(1)根据几何体码放的情况,即可得到答案;(2)根据几何体的三视图,可知:几何体有2排,3列,2层,进而即可得到答案;(3)根据有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,即可得到答案;(4)由题意得:xyz=1,=4yz+6xz+8xy,要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数),进而进行分类讨论,即可求解.【题目详解】(1)∵有序数组所对应的码放的几何体是:3排列4层,∴B选项符合题意,故选B.(2)根据几何体的三视图,可知:几何体有2排,3列,2层,∴这种码放方式的有序数组为(2,3,2),∵几何体有2层,每层有6个单位长方体,∴组成这个几何体的单位长方体的个数为1个.故答案是:2,3,2;1.(3)∵有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,∴=2(yzS1+xzS2+xyS3).(4)由题意得:xyz=1,=4yz+6xz+8xy,∴要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数).∴在由1个单位长方体码放的几何体中,满足条件的有序数组为(1,1,1),(1,2,6),(1,3,4),(2,2,3),∵,,,,∴由1个单位长方体码放的几何体中,表面积最小的有序数组为:(2,2,3),最小表面积为:2.故答案是:2,2,3;2.【题目点拨】本题主要考查几何体的三视图与表面积的综合,掌握几何体的三视图的定义和表面积公式,是解题的关键.23、【题目详解】解:树状图为:
从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)=答:这位考生合格的概率是.24、(1);(2)答案见解析【分析】(1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可;(2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.【题目详解】解:(1)甲的众数为:,方差为:,乙的中位数是:8;故答案为;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.【题目点拨】理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.25、(1)证明见解析;(2)EF=5.【解题分析】试题分析:(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.试题解析:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.26、(1)正确,理由见解析;(2)当a=5时,S矩形MNPQ最大为25;(3)矩形的最大面积为1.【分析】(1)设BF=x,则AF=12﹣x,证明△AFE∽△ABC,进而表示出EF,利用面积公式得出S矩形BDEF=﹣(x﹣6)2+24,即可得出结论;(2)设DE=a,AE=10﹣a,则证明△APN∽△ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 砂砾材料购销合同
- 新版房屋买卖合同协议样本
- 记账服务合同的履行监管要点
- 金蝶软件维护合同
- 出口代理商合同模板
- 电磁流量计招标业务条件和要求
- 专业的管材购销合同
- 2024羊角大椒干购销合同
- 2024简单家庭装修合同模板
- 2024施工图设计合同标准模板
- Unit 14 I remember meeting all of you in Grade 7 第1课时公开课教学设计【人教版九年级英语】
- 2024年-科技部技术转让合同等模板
- 单孔腹腔镜手术
- 2023年度中、美创新药获批情况跟踪报告:获批药物愈发多元化本土创新力量不断迸发-20240221
- (高清版)TDT 1048-2016 耕作层土壤剥离利用技术规范
- 大学生应具备的职业技能讲解材料
- 第2章导游(课件)《导游业务》(第五版)
- 社会体育指导员协会总结
- 国家安全教育国土安全
- 2024年吊篮应急预案(多场合应用)
- 名校课堂七年级上数学人教版电子版
评论
0/150
提交评论