版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市双阳区2024届数学九上期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣22.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤3.已知三点在抛物线上,则的大小关系正确的是()A. B.C. D.4.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是()A.①③ B.②④ C.①②④ D.②③④5.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=6.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.7.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸8.如图所示的几何体的俯视图是()A. B. C. D.9.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是()A. B.C. D.10.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.811.若是方程的两根,则实数的大小关系是()A. B. C. D.12.如图,数轴上的点可近似表示的值是()A.点A B.点B C.点C D.点D二、填空题(每题4分,共24分)13.抛物线y=(x-2)2+3的顶点坐标是______.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为____________.16.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.17.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.18.掷一枚硬币三次,正面都朝上的概率是__________.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.20.(8分)如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,(1)求A、B两点的坐标;(2)若△DBH与△BEH相似,试求抛物线的解析式.21.(8分)如图,是的直径,弦于点,是上一点,,的延长线交于点.(1)求证:.(2)当平分,,,求弦的长.22.(10分)二次函数图象过,,三点,点的坐标为,点的坐标为,点在轴正半轴上,且,求二次函数的表达式.23.(10分)在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.24.(10分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.25.(12分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.26.已知二次函数y=(x-1)2+n的部分点坐标如下表所示:(1)求该二次函数解析式;(2)完成上表,并在平面直角坐标系中画出函数图象
参考答案一、选择题(每题4分,共48分)1、A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【题目详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、C【解题分析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到的度数为90°,故选项①正确;又因OD=OB,所以△BOD为等腰直角三角形,由∠A和∠ACB的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB与圆切线,根据切线的性质得到∠OBA为直角,求出∠CBO=∠OBA-∠ABC=90°-75°=15°,由根据∠BOE为直角,求出∠OEB=180°-∠BOD-∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确;由D不一定为AC中点,即CD不一定等于AD,而选项③不一定成立;又由△OBD为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC,由相似三角形性质和平行线的性质,得比例,由BD=OD,等量代换即可得到BE等=DE,故选项⑤正确.综上,正确的结论有4个.
故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.3、B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性求出点关于对称轴对称的点的坐标,再利用二次函数的增减性判断即可.【题目详解】解:∵抛物线的对称轴是直线x=2,∴点关于对称轴对称的点的坐标是,∵当x<2时,y随x的增大而增大,且0<1<1.5,∴.故选:B.【题目点拨】本题考查了二次函数的性质,属于基本题型,熟练掌握二次函数的性质是解答的关键.4、D【分析】①依据抛物线开口方向可确定a的符号、与y轴交点确定c的符号进而确定ac的符号;②由抛物线与x轴交点的坐标可得出一元二次方程ax2+bx+c=0的根;③由当x=1时y<0,可得出a+b+c<0;④观察函数图象并计算出对称轴的位置,即可得出当x>1时,y随x的增大而增大.【题目详解】①由图可知:,,,故①错误;②由抛物线与轴的交点的横坐标为与,方程的根是,,故②正确;③由图可知:时,,,故③正确;④由图象可知:对称轴为:,时,随着的增大而增大,故④正确;故选D.【题目点拨】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.5、A【解题分析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.6、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【题目详解】解:作OP⊥a于P点,则OP=1.
根据题意,在Rt△OPA中,AP==故选:B.【题目点拨】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.7、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【题目详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【题目点拨】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.8、D【解题分析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.9、B【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此规律即可得出结论.【题目详解】解:设第n秒运动到Pn(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019为(,﹣),故答案为B.【题目点拨】本题考查了规律型中的点的坐标,解题的关键是找出变化规律并根据规律找出点的坐标.10、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【题目详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【题目点拨】本题主要考查了用评率估计概率.11、A【分析】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图即可判断.【题目详解】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图如下:从函数图象可以看出:故选:A【题目点拨】本题考查的是二次函数与一元二次方程的关系,掌握抛物线与x轴的交点的横坐标为y=0时,一元二次方程的根是关键.12、C【分析】先把代数式进行化简,然后进行无理数的估算,即可得到答案.【题目详解】解:,∵,∴,∴点C符合题意;故选:C.【题目点拨】本题考查了二次根式的化简,无理数的估算,解题的关键是掌握运算法则,正确的进行化简.二、填空题(每题4分,共24分)13、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【题目详解】解:y=(x-2)2+3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故答案为(2,3)【题目点拨】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.14、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:,把相关数值代入求正数解即可.【题目详解】设共有x个飞机场.,解得,(不合题意,舍去),故答案为:1.【题目点拨】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【题目详解】∵摸到红球的概率为,且袋中只有1个红球,∴袋中共有4个球,∴白球个数=4-1=3.故答案为:3.【题目点拨】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.16、(2,10)或(﹣2,0)【解题分析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).17、x1>2或x1<1.【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【题目详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<1.故答案为:x1>2或x1<1.【题目点拨】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.18、【分析】根据题意画出树状图,再根据概率公式,即可求解.【题目详解】画树状图如下:∵掷一枚硬币三次,共有8种可能,正面都朝上只有1种,∴正面都朝上的概率是:.故答案是:【题目点拨】本题主要考查求简单事件的概率,画出树状图,是解题的关键.三、解答题(共78分)19、(1)见解析;(2)DC=6.4cm;(3)当△EFB为等腰三角形时,t的值为秒或秒或秒.【分析】(1)根据三角形相似的判定定理即可得到结论;(2)由△ACD∽△BAC,得,结合=8cm,即可求解;(3)若△EFB为等腰三角形,可分如下三种情况:①当BF=BE时,②当EF=EB时,③当FB=FE时,分别求出t的值,即可.【题目详解】(1)∵CD∥AB,∴∠BAC=∠DCA,又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)在Rt△ABC中,=8cm,由(1)知,△ACD∽△BAC,∴,即:,解得:DC=6.4cm;(3)△BEF能为等腰三角形,理由如下:由题意得:AF=2t,BE=t,若△EFB为等腰三角形,可分如下三种情况:①当BF=BE时,10﹣2t=t,解得:t=;②当EF=EB时,如图1,过点E作AB的垂线,垂足为G,则,此时△BEG∽△BAC,∴,即,解得:t=;③当FB=FE时,如图2,过点F作AB的垂线,垂足为H,则,此时△BFH∽△BAC,∴,即,解得:;综上所述:当△EFB为等腰三角形时,t的值为秒或秒或秒.【题目点拨】本题主要考查相似三角形的判定和性质的综合以及等腰三角形的性质与勾股定理,添加辅助线构造相似三角形,是解题的关键.20、(1);(2)见解析.【分析】(1)根据顶点公式求出D坐标(利用a,b,c表示),得到OC,DH(利用a,b,c表示)值,因为S△ABD:S△ACB=9:16,所以得到DH:OC=9:16,得到c=4a,利用交点式得出A,B即可.(2)由题意可以得到,求出DH,EH(利用a表示),因为△DBH与△BEH相似,得到,即可求出a(注意舍弃正值),得到解析式.【题目详解】解:(1)∴∵C(0,c)∴OC=-c,DH=∵S△ABD:S△ACB=9∶16∴∴∴∴(2)①∵EH∥OC∴△AEH∽△ACO∴∴∴∵∵△DBH与△BEH相似∴∠BDH=∠EBH,又∵∠BHD=∠BHE=90°∴△DBH∽△BEH∴∴∴(舍去正值)∴【题目点拨】此题主要考查了二次函数与相似三角形等知识,熟练运用待定系数法、相似三角形是解题的关键.21、(1)证明见解析;(2)2【分析】(1)根据垂径定理可得,即,再根据圆内接四边形的性质即可得证;(2)连接OG,BG,OD,根据等腰直角三角形的性质可得,利用垂径定理和解直角三角形可得,在中应用勾股定理即可求解.【题目详解】解:(1)弦,,,四边形是圆内接四边形,,;(2)连接OG,BG,OD,,∵,∴,∵,∴,∵,∴,在中,,,∴,∵平分,,∴,∵AB是直径,∴,∴,∴,∴,在中,,即,解得或(舍),∴.【题目点拨】本题考查垂径定理、圆内接四边形的性质、勾股定理、等腰直角三角形的性质、解直角三角形等内容,作出辅助线是解题的关键.22、【分析】根据题目所给信息可以得出点C的坐标为(0,5),把A、B、C三点坐标代入可得抛物线解析式.【题目详解】解∵点的坐标为点的坐标为∴又∵点在轴正半轴上∴点的坐标为设二次函数关系式为把,代入得,∴【题目点拨】本题考查的知识点是用待定系数法求二次函数解析式,根据题目信息得出点C的坐标是解此题的关键.23、(1)∠P=36°;(2)∠P=30°.【分析】(1)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(2)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=12∠AOD=40°【题目详解】解:(1)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【题目点拨】本题考查切线的性质.24、(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解题分析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF,"∠P="∠F=90°,"AP=CF∴△APE≌△C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房贷转按揭贷款定金合同3篇
- 器材购销合同(2篇)
- 2025年度企业环保责任履行及监测合同3篇
- 方程(x-1)^2-x^3=5的计算步骤
- 齐鲁理工学院《运筹学C》2023-2024学年第一学期期末试卷
- 2024年高速公路停车场安全设施改造合同3篇
- 2024版番番寻标宝首页
- 2025年度“智慧农业”高科技菜园建设与运营管理合同3篇
- 上海财经大学《常微分方程引论》2023-2024学年第一学期期末试卷
- 二零二五年度电子商务安全协议:SET协议应用下的在线交易安全3篇
- GB 18399-2001棉花加工机械安全要求
- 复旦大学留学生(本科)汉语入学考试大纲
- 送达地址确认书(完整版)
- 试讲 关注合理营养与食品安全课件
- 2022年同等学力人员申请硕士学位日语水平统一考试真题
- 长距离输气管线工艺设计方案
- 北师大版小学五年级上册数学第六单元《组合图形的面积》单元测评培优试卷
- 用特征方程求数列的通项
- 甲醇浓度密度对照表0~40
- 四年级奥数题(一)找规律
- 会计学原理课后习题与答案
评论
0/150
提交评论