2019年河南省南阳市社旗县中考数学一模试卷_第1页
2019年河南省南阳市社旗县中考数学一模试卷_第2页
2019年河南省南阳市社旗县中考数学一模试卷_第3页
2019年河南省南阳市社旗县中考数学一模试卷_第4页
2019年河南省南阳市社旗县中考数学一模试卷_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年河南省南阳市社旗县中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。一、选择题1、的算术平方根是()A.4 B.-4 C.2 D.±2 2、全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-10 3、剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形又是轴对称图形的是()A. B.C. D. 4、如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50° B.40° C.30° D.25° 5、不等式组的解集在数轴上表示,正确的是()A. B.C. D. 6、某校九年级四班数学兴趣小组有5名成员,身高(单位:cm)分别为165、172、168、170、175.增加1名身高为170cm的成员后,现在兴趣小组成员的身高与原来相比()A.平均数变小,方差不变 B.平均数不变,方差不变C.平均数不变,方差变大 D.平均数不变,方差变小 7、我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x个,买苦果y个,则下列关于x、y的二元一次方程组中符合题意的是()A. B.C. D. 8、关于x的一元二次方程(a-1)x2+3x-2=0有实数根,则a的取值范围是()A.B.C.且a≠1D.且a≠1 9、如图,在已知的△ABC中,按以下步骤:(1)分别以B、C为圆心,大于BC的长为半径作弧,两弧相交M、N;(2)作直线MN,交AB于D,连结CD,若CD=AD,∠B=20°,则下列结论:①∠ADC=40°②∠ACD=70°③点D为△ABC的外心④∠ACD=90°,正确的有()A.4个 B.3个 C.2个 D.1个 10、如图,在直角坐标系xoy中,已知A(0,1),B(,0),以线段AB为边向上作菱形ABCD,且点D在y轴上.若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为()A. B.C. D. 二、填空题1、计算:(π-3)0+(-)-1=______2、如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为______.3、推动学校师生共读,家庭亲子共读,已达成我国教育发展的共识,某校组织生“朗读经典,共享阅读”大赛活动,经过评选后有两名男同学和两名女同学获一等奖,学校将从这四名同学中随机挑选两名参加市教育局组织的决赛.则挑选的两名同学恰好是一男一女的概率是______.4、如图,在矩形ABCD中,AC、BD为对角线,AB=2,把BD绕点B逆时针旋转,得到线段BE,当点E落在线段BA的延长线时,恰有DE∥AC,连接CE,则阴影部分的面积为______.5、如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC

上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是______.三、解答题1、先化简÷(-x+1),然后从-<x<的范围内选取一个合适的整数作为x的值代入求值.______2、国家“一带一路”倡议提出以后,得到全世界的广泛参与,助推我国界经济的发展,某校数学兴趣小组为了解所在城市市民对“一带一路”倡议的关注情况,在本市街头随机调查了部分市民,并根据调查结果制成了如下尚不完善的统计图表关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)填空:此次调查人数为______,m=______,n=______(2)请补全条形统计图.(3)根据调查结果,可估计本市120万市民中,高度关注“一带一路”倡议的有多少人?______3、如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=______时,四边形AOCP是菱形;②连接BP,当∠ABP=______时,PC是⊙O的切线.______4、“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示.根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)______5、如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,-2)、B(-2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.______6、俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?______7、如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=______;(2)数学思考:①如图2,若点E在线段AC上,则=______(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.______8、如图,抛物线y=x2+bx+c与x轴交于点A(-1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.______

2019年河南省南阳市社旗县中考数学一模试卷参考答案一、选择题第1题参考答案:C解:∵=4,∴的算术平方根是=2.故选:C.首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,注意要首先计算=4.---------------------------------------------------------------------第2题参考答案:C解:数据0.000000007用科学记数法表示为7×10-9.故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.---------------------------------------------------------------------第3题参考答案:C解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.---------------------------------------------------------------------第4题参考答案:A解:如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选:A.由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.---------------------------------------------------------------------第5题参考答案:B解:解不等式①得:x>-1,解不等式②得:x≤2,则不等式组的解集为-1<x≤2,在数轴上表示为:,故选:B.分别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.---------------------------------------------------------------------第6题参考答案:D解:原数据的平均数:×(165+170+175+168+172)=170(cm),方差:×[(165-170)2+(170-170)2+(175-170)2+(168-170)2+(172-170)2]=(cm2),新数据的平均数:×(165+170+170+175+168+172)=170(cm),方差:×[(165-170)2+2×(170-170)2+(175-170)2+(168-170)2+(172-170)2]==(cm2),所以平均数不变,方差变小,故选:D.根据平均数的计算方法分别计算出5名同学和6名同学的平均数,再分别计算出方差,可得答案.本题考查了方差,关键是掌握方差的定义和计算公式.---------------------------------------------------------------------第7题参考答案:D解:由题意可得,,故选:D.根据题意可以列出相应的方程组,从而可以解答本题.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.---------------------------------------------------------------------第8题参考答案:D解:根据题意得a≠1且△=32-4(a-1)•(-2)≥0,解得a≥-且a≠1.故选:D.根据一元二次方程的定义和判别式的意义得到a≠1且△=32-4(a-1)•(-2)≥0,然后求出两个不等式解集的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.---------------------------------------------------------------------第9题参考答案:B解:由题意可知,直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD=20°,∴∠ADC=∠BCD+∠CBD=40°,故A选项正确;又∵CD=AD,∴∠A=∠ACD,又∵∠A+∠ACD+∠ADC=180°,∴∠ACD=70°,故B选项正确,D选项错误;∵AD=CD,BD=CD,∴AD=BD,即D是AB的中点,故C选项正确;故选:B.依据直线MN是线段BC的垂直平分线,可得∠B=∠BCD=20°,进而得出∠ADC=40°;依据AD=CD与三角形内角和定理,即可得到∠ACD=70°;依据AD=BD,即可得出D是AB的中点;依据AD=CD=DB,即可得到点D是△ABC的外接圆圆心;依据∠ACD=70°得∠ACD≠90°.本题主要考查了线段垂直平分线的性质,经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称“中垂线”.---------------------------------------------------------------------第10题参考答案:A解:∵A(0,1),B(,0),∴OA=1,OB=,∴AB===2,∵tan∠BAO===,∴∠BAO=60°,∴菱形ABCD的高为2×=,∵菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,∴菱形沿y轴方向滑落的速度为1,沿x轴方向滑落的速度,①点A在x轴上方时,落在x轴下方部分是三角形,面积S=•t•t=t2,②点A在x轴下方,点C在x轴上方时,落在x轴下方部分是梯形,面积S=[t+(t-1)•1]×=t-,③点C在x轴下方时,x轴下方部分为菱形的面积减去x轴上方部分的三角形的面积,S=2×-(3-t)•(6-2t)=2-(3-t)2,纵观各选项,只有A选项图形符合.故选:A.根据点A、B的坐标求出OA、OB,再利用勾股定理列式求出AB,再求出菱形的高,以及菱形沿y轴方向滑落的速度和x轴方向滑落的速度,再分①点A在x轴上方时,利用三角形的面积公式表示出s与t的函数关系式,②点A在x轴下方,点C在x轴上方时,利用梯形的面积公式表示出s与t的函数关系式,③点C在x轴下方时,利用菱形ABCD的面积减去x轴上方部分的三角形的面积,列式整理得到s与t的函数关系式,从而判断出函数图象而得解.本题考查了动点问题的函数图象,主要利用了菱形的性质,解直角三角形,分三段得到x轴下方部分的图形并求出相应的函数关系式是解题的关键.二、填空题---------------------------------------------------------------------第1题参考答案:-3解:原式=1-4=-3.故答案为:-3.根据零指数幂:a0=1(a≠0)和负整数指数幂:a-n=(a≠0)可直接得到答案.此题主要考查了零指数幂和负整数指数幂,关键是掌握零指数幂公式和负整数指数幂公式.---------------------------------------------------------------------第2题参考答案:8解:∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.---------------------------------------------------------------------第3题参考答案:解:画树状图为:共有12种等可能的结果数,其中挑选的两名同学恰好是一男一女的结果数为8,所以挑选的两名同学恰好是一男一女的概率==.故答案为.画树状图展示所有12种等可能的结果数,找出挑选的两名同学恰好是一男一女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.---------------------------------------------------------------------第4题参考答案:π-2解:如图,设AC交BD于点O.∵四边形ABCD是矩形,∴OB=OD=OA=OC,∵OA∥DE,∴BA=AE,∵BD=BE,∴AB=OB=OA,∴△AOB是等边三角形,∴∠EBD=60°,∵AB=2,∠BAD=90°,∴AD=AB=2,∵BE∥CD,∴S△CDE=S△ADC,∵S阴=S弓形DmE+S△CDE=S扇形BED-S△BED+S△ADC=-×42+×2×2=π-2.故答案为π-2.如图,设AC交BD于点O.首先证明△OAB是等边三角形,根据S阴=S弓形DmE+S△CDE=S扇形BED-S△BED+S△ADC,计算即可.本题考查矩形的性质,扇形的面积,弓形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.---------------------------------------------------------------------第5题参考答案:2或5解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.三、解答题---------------------------------------------------------------------第1题参考答案:解:÷(-x+1)====,∵-<x<且x+1≠0,x-1≠0,x≠0,x是整数,∴x=-2时,原式=-.根据分式的减法和除法可以化简题目中的式子,然后在-<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法,注意取得的x的值必须使得原分式有意义.---------------------------------------------------------------------第2题参考答案:200

20

0.15

解:(1)此次调查的人数为100÷0.5=200(人),m=200×0.1=20,n=30÷200=0.15,故答案为:200,20,0.15;(2)补全条形图如下:(3)可估计本市120万市民中,高度关注“一带一路”倡议的有120×0.1=12(万人).(1)由B种关注情况的频数及其频率可得样本容量,再根据频率=频数÷总人数可得m、n的值;(2)根据(1)中所求结果可补全条形图;(3)总人数乘以样本中A种关注情况的频率即可得.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.---------------------------------------------------------------------第3题参考答案:120°

45°

(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.---------------------------------------------------------------------第4题参考答案:解:如图所示:可得:∠CAD=45°,∠CBD=60°,AB=200m,则设BD=x,故DC=x,∵AD=DC,∴200+x=x,解得:x=100(+1)≈273,答:小明还需沿绿道继续直走273米才能到达桥头D处.根据题意表示出AD,DC的长,进而得出等式求出答案.此题主要考查了解直角三角形的应用,正确得出AD=DC是解题关键.---------------------------------------------------------------------第5题参考答案:解:(1)将A(4,-2)代入y=,得k2=-8.∴y=-将(-2,n)代入y=-n=4.∴k2=-8,n=4(2)根据函数图象可知:-2<x<0或x>4(3)将A(4,-2),B(-2,4)代入y=k1x+b,得k1=-1,b=2∴一次函数的关系式为y=-x+2与x轴交于点C(2,0)∴图象沿x轴翻折后,得A′(4,2),S△A'BC=(4+2)×(4+2)×-×4×4-×2×2=8∴△A'BC的面积为8.(1)将A点坐标代入y=(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.---------------------------------------------------------------------第6题参考答案:解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.---------------------------------------------------------------------第7题参考答案:1

解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC-CE)=2(-CE),EF=2,根据勾股定理得,CE2+CF2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论