2024届吉林省四平市伊通满族自治县数学九上期末质量检测模拟试题含解析_第1页
2024届吉林省四平市伊通满族自治县数学九上期末质量检测模拟试题含解析_第2页
2024届吉林省四平市伊通满族自治县数学九上期末质量检测模拟试题含解析_第3页
2024届吉林省四平市伊通满族自治县数学九上期末质量检测模拟试题含解析_第4页
2024届吉林省四平市伊通满族自治县数学九上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省四平市伊通满族自治县数学九上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=()A.80° B.70° C.60° D.50°2.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20° B.30° C.40° D.60°3.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有两个相等的实数根.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个4.下列关于反比例函数,结论正确的是()A.图象必经过B.图象在二,四象限内C.在每个象限内,随的增大而减小D.当时,则5.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣26.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形7.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离 B.相切 C.相交 D.无法判断8.若关于x的一元二次方程(a+1)x2+x+a2-1=0的一个解是x=0,则a的值为()A.1 B.-1 C.±1 D.09.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A. B. C. D.10.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:111.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.12.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=3二、填空题(每题4分,共24分)13.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.14.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.15.已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为___cm.16.若是方程的一个根,则的值是________.17.已知点、在二次函数的图像上,则___.(填“”、“”、“”)18.点(2,3)关于原点对称的点的坐标是_____.三、解答题(共78分)19.(8分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;20.(8分)已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE下方抛物线上一动点,求△PAE面积的最大值;(3)动点Q在x轴上移动,当△QAE是直角三角形时,直接写出点Q的坐标;(4)若点M在y轴上,点F在抛物线上,问是否存在以A、E、M、F为顶点的平行四边形,若存在直接写出所有符合条件的点M的坐标;若不存在,请说明理由.21.(8分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,(1)求线段OD的长度;(2)求弦AB的长度.22.(10分)元旦期间,九年级某班六位同学进行跳圈游戏,具体过程如下:图1所示是一枚质地均匀的正方体骰子,骰子的六个面上的点数分别是1,1,3,4.5,6,如图1,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每投掷一次骰子,假骰子向上的一面上的点数是几,就沿着正六边形的边逆时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就逆时针连续跳3个边长,落到圈D;若第二次掷得1.就从图D开始逆时针连续起跳1个边长,落到圈F…,设游戏者从圈A起跳(1)小明随机掷一次骰子,求落回到圈A的概率P1;(1)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P1.23.(10分)已知的半径长为,弦与弦平行,,,求间的距离.24.(10分)已知:如图,四边形的对角线、相交于点,.(1)求证:;(2)设的面积为,,求证:S四边形ABCD.25.(12分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间具有某种函数关系,其对应规律如下表所示售价x(元/本)…222324252627…销售量y(件)…363432302826…(1)请直接写出y与x的函数关系式:.(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?26.在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据圆周角的性质可得∠ABC=∠D,再根据直径所对圆周角是直角,即可得出∠ACO的度数.【题目详解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故选:D.【题目点拨】本题考查圆周角的性质,关键在于熟练掌握圆周角的性质,特别是直径所对的圆周角是直角.2、C【解题分析】试题分析:由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得:,然后由圆周角定理可得∠BOD=2∠CAB=2×20°=40°.故选C.考点:圆周角定理;垂径定理.3、B【分析】先从二次函数图像获取信息,运用二次函数的性质一—判断即可.【题目详解】解:∵二次函数与x轴有两个交点,∴b2-4ac>0,故①错误;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,且抛物线开口向下,∴当x=1时,有y=a+b+c<0,故②正确;∵函数图像的顶点为(-1,2)∴a-b+c=2,又∵由函数的对称轴为x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正确;由①得b2-4ac>0,则ax2+bx+c=0有两个不等的实数根,故④错误;综上,正确的有两个.故选:B.【题目点拨】本题考查了二次函数的图像与系数的关系,从二次函数图像上获取有用信息和灵活运用数形结合思想是解答本题的关键.4、B【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案.【题目详解】∵,∴A错误,∵k=-8<0,即:函数的图象在二,四象限内,∴B正确,∵k=-8<0,即:在每个象限内,随的增大而增大,∴C错误,∵当时,则或,∴D错误,故选B.【题目点拨】本题主要考查反比例函数的图象和性质,掌握比例系数k的意义与增减性,是解题的关键.5、D【解题分析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.6、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【题目详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误.D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【题目点拨】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.7、C【解题分析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.8、A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值,且(a+1)x2+x+a2-1=0为一元二次方程,即.【题目详解】把x=0代入方程得到:a2-1=0解得:a=±1.(a+1)x2+x+a2-1=0为一元二次方程即.综上所述a=1.故选A.【题目点拨】此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.9、A【题目详解】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC•tan30°==2,∴S阴影=S△ABC﹣S扇形CBD==.故选A.【题目点拨】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键.10、C【分析】菱形的性质;含30度角的直角三角形的性质.【题目详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.11、D【解题分析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.12、D【分析】利用因式分解法求解可得.【题目详解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.【题目点拨】本题考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.二、填空题(每题4分,共24分)13、【题目详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴14、1【分析】直接利用关于原点对称点的性质得出3a+b=﹣1,进而得出答案.【题目详解】解:∵点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),∴,故3a+b=﹣1,则(3a+b)2020=1.故答案为:1.【题目点拨】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.15、【分析】把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割,其比值是【题目详解】∵P为线段AB的黄金分割点,且PA>PB,AB=2cm,∴故答案为.【题目点拨】分析题意可知,本题主要考查了黄金分割,弄清楚黄金分割的定义是解答此题的关键;16、1【分析】将代入方程,得到,进而得到,,然后代入求值即可.【题目详解】解:由题意,将代入方程∴,,∴故答案为:1【题目点拨】本题考查一元二次方程的解,及分式的化简,掌握方程的解的概念和平方差公式是本题的解题关键.17、【分析】把两点的坐标分别代入二次函数解析式求出纵坐标,再比较大小即可得解.【题目详解】时,,

时,,

∵>0,

∴;

故答案为:.【题目点拨】本题考查了二次函数的性质及二次函数图象上点的坐标特征,用求差法比较大小是常用的方法.18、(-2,-3).【解题分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).三、解答题(共78分)19、(1)y=(x-1)2-1或y=x2-2x-3;(2)y=-(x-1)2+1【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【题目详解】(1)根据题意,二次函数图像的顶点坐标为(1,-1),设二次函数的表达式为y=a(x-1)2-1把(0,-3)代入y=a(x-1)2-1得,a=1∴y=(x-1)2-1或y=x2-2x-3(2)解:∵y=y=(x-1)2-1,

∴原函数图象的顶点坐标为(1,-1),

∵描出的抛物线与抛物线y=x2-2x-3关于x轴对称,

∴新抛物线顶点坐标为(1,1),

∴这条抛物线的解析式为y=-(x-1)2+1,故答案为:y=-(x-1)2+1.【题目点拨】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.20、(1);(2);(3)或;(4)存在,【分析】(1)求出点A坐标后再利用待定系数法求解;(2)先联立直线与抛物线的解析式求出点E坐标,然后过点P作y轴的平行线交抛物线于点N,如图,设点P的横坐标为m,则PN的长可与含m的代数式表示,而△PAE的面积==,于是求△PAE面积的最大值转化为求PN的最大值,再利用二次函数的性质求解即可;(3)先求出AE的长,再设出P点的坐标,然后分三种情况利用勾股定理得到有关P点的横坐标的方程,解方程即可;(4)分两种情况讨论:若AE为对角线,则AM∥EF,由于过点E与y轴平行的直线与抛物线再无交点,故此种情况不存在;若AE为边,根据平行四边形的性质可设M(0,n),则F(6,n+3)或(﹣6,n-3),然后代入抛物线的解析式求解即可.【题目详解】解:(1)∵直线与y轴交于A,∴A点的坐标为(0,2),又∵B点坐标为(1,0),∴解得:∴;(2)根据题意得:,解得:或,∴A(0,2),E(6,5),过点P作y轴的平行线交抛物线于点N,如图,设P(m,)则N(m,)则PN=()-()=(0<m<6),=+==,∴==,∴当m=3时,△PAE面积有最大值;(3)∵A(0,2),E(6,5),∴AE=3,设Q(x,0),则AQ2=x2+4,EQ2=(x﹣6)2+25,①若Q为直角顶点,则AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此时方程无解,故此时不存在x的值;②若点A为直角顶点,则AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E为直角顶点,则AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x=,即Q(,0);∴Q(1,0)或(,0);(4)若AE为对角线,则AM∥EF,由于过点E与y轴平行的直线与抛物线再无交点,故此时不存在符合题意的点M;若AE为边,设M(0,n),则F(6,n+3)或(﹣6,n-3),当F(6,n+3)时,此时点E、F重合,不合题意;当F(﹣6,n-3)时,n-3=,解得:n=38,此时点M坐标为(0,38);综上,存在点M,使以A、E、M、F为顶点的平行四边形,且点M的坐标是(0,38).【题目点拨】本题是二次函数的综合题,主要考查了待定系数法求抛物线的解析式、二次函数的图象与性质、两函数的交点、一元二次方程的解法、勾股定理以及平行四边形的性质等知识,涉及的知识点多、综合性强,属于中考压轴题,熟练掌握上述知识、灵活应用数形结合以及分类的思想是解题的关键.21、(1)OD=4;(2)弦AB的长是1.【分析】(1)OD=OC-CD,即可得出结果;(2)连接AO,由垂径定理得出AB=2AD,由勾股定理求出AD,即可得出结果.【题目详解】(1)∵半径是5,∴OC=5,∵CD=1,∴OD=OC﹣CD=5﹣1=4;(2)连接AO,如图所示:∵OC⊥AB,∴AB=2AD,根据勾股定理:AD=,∴AB=3×2=1,因此弦AB的长是1.【题目点拨】本题考查了垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出AD是解决问题(2)的关键.22、(1);(1)【分析】(1)直接利用概率公式求解;

(1)先画树状图得到36种等可能的结果,再找出两数的和为6的倍数的结果数,然后根据概率公式求解.【题目详解】(1)共有6种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(1)画树状图为:∵共有36种等可能的结果,最后落回到圈A的有(1,5),(1,4),(3,3),(4,1),(5,1),(6,6),∴小亮最后落回到圈A的概率P1==.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23、1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB、CD在点O的同侧时,AB、CD在点O的两侧时两种情况分别计算求出EF即可.【题目详解】如图,过点O作OE⊥CD于E,交AB于点F,∵,∴OE⊥AB,在Rt△AOF中,OA=5,AF=AB=3,∴OF=4,在Rt△COE中,OC=5,CE=CD=4,∴OE=3,当AB、CD在点O的同侧时,、间的距离EF=OF-OE=4-3=1;当AB、CD在点O的两侧时,AB、CD间的距离EF=OE+OF=3+4=7,故答案为:1或7.【题目点拨】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.24、(1)证明见解析;(2)证明见解析【分析】(1)由S△AOD=S△BOC易得S△ADB=S△ACB,根据三角形面积公式得到点D和点C到AB的距离相等,则CD∥AB,于是可判断△DOC∽△BOA,然后利用相似比即可得到结论;

(2)利用相似三角形的性质可得结论.【题目详解】(1)∵S△AOD=S△BOC,

∴S△AOD+S△AOB=S△BOC+S△AOB,即S△ADB=S△ACB,

∴CD∥AB,

∴△DOC∽△BOA,

∴;

(2)∵△DOC∽△BOA

∴=k,2=k2,

∴DO=kOB,CO=kAO,S△COD=k2S,

∴S△AOD=kS△OAB=kS,S△COB=kS△OAB=kS,

∴S四边形ABCD=S+kS+kS+k2S=(k+1)2S.【题目点拨】此题考查相似三角形的判定和性质,证明△DOC∽△BOA是解题的关键.25、(1)y=﹣2x+2;(2)W=﹣2x2+120x﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元【分析】(1)由表中数据可知,y是x的一次函数,设y=kx+b,代入表中的两组数据,即可得出函数解析式,再将其余数据验证一下更好;

(2)根据(售价-进价)×销售量=利润,列出函数关系式,再由二次函数的性质可得何时取最大值即可.【题目详解】(1)由表中数据可知,y是x的一次函数,设y=kx+b,由题意得:解得∴y=﹣2x+2检验:当x=24时,y=﹣2×24+2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论