版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04函数零点问题之分段分析法模型一、单选题1.(2021·浙江奉化·高二期末)若函数至少存在一个零点,则的取值范围为()A. B. C. D.【答案】A【分析】将条件转化为有解,然后利用导数求出右边函数的值域即可.【详解】因为函数至少存在一个零点所以有解即有解令,则因为,且由图象可知,所以所以在上单调递减,令得当时,单调递增当时,单调递减所以且当时所以的取值范围为函数的值域,即故选:A【点睛】1.本题主要考查函数与方程、导数与函数的单调性及简单复合函数的导数,属于中档题.2.若方程有根,则的范围即为函数的值域2.(2021·天津·耀华中学高二期中)设函数,记,若函数至少存在一个零点,则实数的取值范围是A. B.C. D.【答案】A【详解】函数定义域是,,,设,则,设,则,,易知,即也即在上恒成立,所以在上单调递增,又,因此是的唯一零点,当时,,当时,,所以在上递减,在上递增,,函数至少有一个零点,则,.故选A.考点:函数的零点,用导数研究函数的性质.【名师点睛】本题考查函数的零点的知识,考查导数的综合应用,题意只要函数的最小值不大于0,因此要确定的正负与零点,又要对求导,得,此时再研究其分子,于是又一次求导,最终确定出函数的最小值,本题解题时多次求导,考查了学生的分析问题与解决问题的能力,难度较大.3.(2021·湖南·长沙一中高三月考(文))设函数(其中为自然对数的底数),若函数至少存在一个零点,则实数的取值范围是()A. B. C. D.【答案】D【分析】由题意得,构造新函数,通过利用函数的单调性,可知在处取最小值,函数至少存在一个零点,只需即可,即可求出实数的取值范围.【详解】依题意得,函数至少存在一个零点,且,可构造函数和,因为,开口向上,对称轴为,所以为单调递减,为单调递增;而,则,由于,所以为单调递减,为单调递增;可知函数及均在处取最小值,所以在处取最小值,又因为函数至少存在一个零点,只需即可,即:解得:.故选:D.【点睛】本题考查了函数的图象与性质的应用问题,通过构造新函数以及利用二次函数性质和导数求出函数的单调性进而求出函数最小值,结合零点求出参数范围.4.(2021·天津·南开中学高三)设函数(其中为自然对数的底数),若函数至少存在一个零点,则实数的取值范围是A. B.C. D.【答案】D【详解】令,则,设,令,,则,发现函数在上都是单调递增,在上都是单调递减,故函数在上单调递增,在上单调递减,故当时,得,所以函数至少存在一个零点需满足,即.应选答案D.点睛:解答本题时充分运用等价转化与化归的数学思想,先将函数解析式中的参数分离出来,得到,然后构造函数,分别研究函数,的单调性,从而确定函数在上单调递增,在上单调递减,故当时,得,所以函数至少存在一个零点等价于,即.使得问题获解.5.(2021·全国·高三专题练习(文))已知函数(其中为自然对数的底数)至少存在一个零点,则实数的取值范围是()A. B.C. D.【答案】B【分析】将函数的零点问题转化为函数与函数图象的交点个数问题,利用导数得出函数的单调性,进而得出其草图,结合图象,即可得出实数的取值范围.【详解】令,即令,则函数与函数的图象至少有一个交点易知,函数表示开口向上,对称轴为的二次函数,函数在上单调递增,在上单调递减,作出函数与函数的草图,如下图所示由图可知,要使得函数与函数的图象至少有一个交点只需,即解得:故选:B【点睛】本题主要考查了已知函数的零点个数求参数的范围,涉及了导数的应用,属于中档题.6.(2018·全国全国·高三专题练习(文))已知函数的图象上存在三个不同点,且这三个点关于原点的对称点在函数的图象上,其中为自然对数的底数,则实数的取值范围为A. B. C. D.【答案】B【解析】令,则由题意可得函数的图象与函数的图象有三个交点,即方程有三个不同的实数根.由可得,即,令,则直线与函数的图象有三个交点,易得,当或时,当时,所以函数在上单调递减,在上单调递增,在上单调递减,所以函数的极小值为,极大值为.又,,所以当时,直线与函数的图象有三个交点,故实数的取值范围为.故选B.7.(2022·全国·高三专题练习)已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.【答案】B【分析】求出导函数、求出函数的单调区间,得出函数的极值,要使函数有两个零点,即可.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.8.(2021·全国·高二)若存在两个正实数、,使得等式成立,其中为自然对数的底数,则实数的取值范围是().A.B.C.D.【答案】B【分析】方程有解,原方程两边同除以,然后令,问题变为有解,即有解,引入函数,由导数求出它的最小值,解关于参数的不等式可得的范围.【详解】由得,设,,则,则有解,设,为增函数,,当时,递增,当时,递减,所以当时函数取极小值,,即,若有解,则,即,所以或,故选:B.【点睛】关键点点睛:本题考查方程有解问题,对于双变量问题,首先变形后引入新变量把问题变为单变量,再引入新函数,利用导数求得函数值的范围,然后再解相应的不等式可得所求参数范围.9.(2017·黑龙江大庆·三模(文))设函数,记,若函数至少存在一个零点,则实数的取值范围是A. B.C. D.【答案】A【详解】函数定义域是,,,设,则,设,则,,易知,即也即在上恒成立,所以在上单调递增,又,因此是的唯一零点,当时,,当时,,所以在上递减,在上递增,,函数至少有一个零点,则,.故选A.考点:函数的零点,用导数研究函数的性质.【名师
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年劳动合同范本(含派遣)
- 污水处理设备环保合规方案
- 医疗机构突发公共卫生事件应急方案
- 2024年供应链协同作业协议
- 2024年大型风力发电项目开发建设合同
- 2024年古董古玩买卖合同:古玩交易中的交付及验收程序
- 2024年企业形象重塑策划咨询合同
- (2024版)包含智能广告系统的出租车承包合同协议书
- 2024年体育赛事组织合同标的为国际马拉松赛事策划
- 移动学习智慧教室实施方案
- 2024年农业农村部大数据发展中心第三批面向社会公开招聘7人(高频重点复习提升训练)共500题附带答案详解
- 了解红旗渠学习红旗渠精神
- 城市梁桥拆除工程安全技术规范
- 《食品添加剂应用技术》第二版 课件 任务1.2 食品添加剂使用标准检索-1标准解读
- 2024年二级建造师继续教育题库及答案(500题)
- 河北省保定市劳动合同范本
- 脱硫计算公式
- 我的家乡吉林课件
- 中国儿童有声读物行业市场现状分析及竞争格局与投资发展研究报告2024-2029版
- 二年级100以内加减乘除混合口算题(直接打印)
- 医院大中型设备成本效益分析表格
评论
0/150
提交评论