江苏省东台市第二联盟2024届数学九上期末联考模拟试题含解析_第1页
江苏省东台市第二联盟2024届数学九上期末联考模拟试题含解析_第2页
江苏省东台市第二联盟2024届数学九上期末联考模拟试题含解析_第3页
江苏省东台市第二联盟2024届数学九上期末联考模拟试题含解析_第4页
江苏省东台市第二联盟2024届数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省东台市第二联盟2024届数学九上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个2.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.13.下列函数中,是的反比例函数()A. B. C. D.4.要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位 B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位 D.向右平移1个单位,再向下平移2个单位5.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>-1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.46.把二次函数化为的形式是A. B.C. D.7.如图,阳光透过窗户洒落在地面上,已知窗户高,光亮区的顶端距离墙角,光亮区的底端距离墙角,则窗户的底端距离地面的高度()为()A. B. C. D.8.一个扇形的半径为4,弧长为,其圆心角度数是()A. B. C. D.9.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.10.已知点在抛物线上,则下列结论正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.12.抛物线的顶点坐标是__________________.13.圆内接正六边形的边长为6,则该正六边形的边心距为_____.14.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.15.点(2,3)关于原点对称的点的坐标是_____.16.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是_____.17.已知中,,,,则的长为__________.18.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了________米三、解答题(共66分)19.(10分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值为;(2)该班学生中考体育成绩的中位数落在组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.20.(6分)如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;(2)若α=45°,求BD:DC的值;(3)求证:AM•CN=AN•BD.21.(6分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?22.(8分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=1.(1)求⊙O半径;(2)求证:DE为⊙O的切线;23.(8分)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.1.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于17.1万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?24.(8分)解方程:x2+x﹣1=1.25.(10分)沙坪坝正在创建全国文明城市,其中垃圾分类是一项重要的举措.现随机抽查了沙区部分小区住户12月份某周内“垃圾分类”的实施情况,并绘制成了以下两幅不完整的统计图,图中表示实施天数小于5天,表示实施天数等于5天,表示实施天数等于6天,表示实施天数等于7天.(1)求被抽查的总户数;(2)补全条形统计图;(3)求扇形统计图中的圆心角的度数.26.(10分)超市销售某种儿童玩具,该玩具的进价为100元/件,市场管理部门规定,该种玩具每件利润不能超过进价的60%.现在超市的销售单价为140元,每天可售出50件,根据市场调查发现,如果销售单价每上涨2元,每天销售量会减少1件。设上涨后的销售单价为x元,每天售出y件.(1)请写出y与x之间的函数表达式并写出x的取值范围;(2)设超市每天销售这种玩具可获利w元,当x为多少元时w最大,最大为名少元?

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.2、B【解题分析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.3、A【分析】根据形如(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是因变量,自变量x的取值范围是不等于0的一切实数.分别对各选项进行分析即可.【题目详解】A.是反比例函数,正确;B.是二次函数,错误;C.是一次函数,错误;D.,y是的反比例函数,错误.故选:A.【题目点拨】本题考查了反比例函数的定义.反比例函数解析式的一般形式为(k≠0),也可转化为y=kx-1(k≠0)的形式,特别注意不要忽略k≠0这个条件.4、A【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【题目详解】y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x2的顶点坐标是(0,0),

则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.

故选:A.【题目点拨】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.5、C【解题分析】试题分析:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.考点:二次函数的性质6、B【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【题目详解】原式=(x2+4x−4)=(x2+4x+4−8)=(x+2)2−2故选:B.【题目点拨】此题考查了二次函数一般式与顶点式的转换,解答此类问题时只要把函数式直接配方即可求解.7、A【分析】根据光沿直线传播的原理可知AE∥BD,则∽,根据相似三角形的对应边成比例即可解答.【题目详解】解:∵AE∥BD∴∽∴∵,,∴解得:经检验是分式方程的解.故选:A.【题目点拨】本题考查了相似三角形的判定及性质,解题关键是熟知:平行于三角形一边的直线和其他两边或延长线相交,所截得的三角形与原三角形相似.8、C【分析】根据弧长公式即可求出圆心角的度数.【题目详解】解:∵扇形的半径为4,弧长为,∴解得:,即其圆心角度数是故选C.【题目点拨】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.9、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【题目详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【题目点拨】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.10、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【题目详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【题目点拨】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况二、填空题(每小题3分,共24分)11、.【分析】根据三角形的面积公式求出BC边上的高=3,根据△ADE∽△ABC,求出正方形DEFG的边长为2,根据等于高之比即可求出MN.【题目详解】解:作AQ⊥BC于点Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC边上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE边上的高为1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案为.【题目点拨】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大,作辅助线AQ⊥BC是解题的关键.12、(2,0).【分析】直接利用顶点式可知顶点坐标.【题目详解】顶点坐标是(2,0),故答案为:(2,0).【题目点拨】主要考查了求抛物线顶点坐标的方法.13、3【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可.【题目详解】如图所示,连接OB、OC,过O作OG⊥BC于G.∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴边心距OG=OB•sin∠OBG=6(cm).故答案为:.【题目点拨】本题考查了正多边形与圆、锐角三角函数的定义及特殊角的三角函数值,熟知正六边形的性质是解答本题的关键.14、1【分析】根据菱形的面积公式即可求解.【题目详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【题目点拨】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.15、(-2,-3).【解题分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).16、【解题分析】由于函数y=(x-h)1的图象为开口向上,顶点在x轴上的抛物线,故可先分别得出点A和点B的坐标,因为这两个点为抛物线与与正方形ABCD有公共点的临界点,求出即可得解.【题目详解】∵点O是边长为1的正方形ABCD的中心,∴点A和点B坐标分别为(1,1)和(-1,1),∵函数y=(x-h)1的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形ABCD有公共点的临界点为点A和点B,把点B坐标代入y=(x-h)1,得1=(-1-h)1∴h=0(舍)或h=-1;把点A坐标代入y=(x-h)1,得1=(1-h)1∴h=0(舍)或h=1.函数y=(x-h)1的图象与正方形ABCD有公共点,则h的取值范围是-1≤h≤1.故答案为-1≤h≤1.【题目点拨】本题考查二次函数图象与正方形交点的问题,需要先判断抛物线的开口方向,顶点位置及抛物线与正方形二者的临界交点,需要明确临界位置及其求法.17、5或1【分析】作交BC于D,分两种情况:①D在线段BC上;②D在线段BC的延长线上,根据锐角三角函数值和勾股定理求解即可.【题目详解】作交BC于D①D在线段BC上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴②D在线段BC的延长线上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴故答案为:5或1.【题目点拨】本题考查了解三角形的问题,掌握锐角的三角函数以及勾股定理是解题的关键.18、.【分析】利用垂直高度,求出水平宽度,利用勾股定理求解即可.【题目详解】解:如图所示:根据题意,在Rt△ABC中,BC=2m,,解得AC=40m,根据勾股定理m.故答案为:.【题目点拨】此题主要考查解直角三角形的应用,勾股定理.理解坡度坡角的定义,由勾股定理得出AB是解决问题的关键.三、解答题(共66分)19、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【题目详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是==.【题目点拨】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.20、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.(3)证明△BDM∽△CND,推出=,推出DM•CN=DN•BD可得结论.【题目详解】(1)由翻折的性质可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD•cos30°=x,∴MA=MD=x,∴BC=AB=x+x,∴CD=BC﹣BD=x﹣x,∴BD:CD=2x:(x﹣x)=+1.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴=,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【题目点拨】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.21、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解题分析】分析:分析:(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C与D的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.22、(1)半径为6;(2)见解析【分析】(1)根据直径所对的圆周角是直角,证明AD⊥BC,结合DC=BD可得AB=AC=1,则半径可求出;

(2)连接OD,先证得∠AED=90°,根据三角形中位线定理得出OD∥AC,由平行线的性质,得出OD⊥DE,则结论得证.【题目详解】解:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵BD=CD,∴AB=AC=1,∴⊙O半径为6;(2)证明:连接OD,∵∠CDE=∠DAC,∴∠CDE+∠ADE=∠DAC+∠ADE,∴∠AED=∠ADB,由(1)知∠ADB=90°,∴∠AED=90°,∵DC=BD,OA=OB,∴OD∥AC.∴∠ODF=∠AED=90°,∴半径OD⊥EF.∴DE为⊙O的切线.【题目点拨】本题考查切线的判定,圆周角定理,熟练掌握切线的判定方法是解题的关键.23、(1);(2)当x=81元时,年获利最大值为80万元;(3)销售单价定为70元【分析】(1)根据函数图像,可得两点坐标,利用待定系数法求得y关于x的函数解析式;(2)依据题意,年利润=单件利润×销量-年总开支,将y用x表示,可得出w与x的二次函数关系,再利用配方法得到最值;(3)令二次函数的w的值大于等于17.1,求得x的取值范围,根据要使销量最大,确定最终x的值.【题目详解】(1)根据函数图像,有点(70,1)和(90,3)设函数解析式为:y=kx+b则1=70x+b,3=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论