版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省固镇县九年级数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BDC的度数为()A.15° B.20° C.25° D.30°2.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C. D.3.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁4.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π5.某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为()A. B.C. D.6.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π7.如图,这是二次函数的图象,则的值等于()A. B. C. D.8.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.9.化简的结果是A.-9 B.-3 C.±9 D.±310.如图,将绕点旋转180°得到,设点的坐标为,则点的坐标为()A. B. C. D.11.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.图象是轴对称图形,但不是中心对称图形C.无论x取何值时,y随x的增大而增大D.点(,﹣8)在该函数的图象上12.抛物线y=4x2﹣3的顶点坐标是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)二、填空题(每题4分,共24分)13.若,且,则的值是______.14.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,则k的值为________.15.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.16.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.17.如图,的直径长为6,点是直径上一点,且,过点作弦,则弦长为______.18.如图,在平面直角坐标系中,四边形和四边形都是正方形,点在轴的正半轴上,点在边上,反比例函数的图象过点、.若,则的值为_____.三、解答题(共78分)19.(8分)如图,为的直径,、为上两点,且点为的中点,过点作的垂线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)当,时,求的长.20.(8分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.21.(8分)如图,为的直径,为上一点,,延长至点,使得,过点作,垂足在的延长线上,连接.(1)求证:是的切线;(2)当时,求图中阴影部分的面积.22.(10分)如图,是的直径,是上半圆的弦,过点作的切线交的延长线于点,过点作切线的垂线,垂足为,且与交于点,设,的度数分别是.用含的代数式表示,并直接写出的取值范围;连接与交于点,当点是的中点时,求的值.23.(10分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.24.(10分)用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=025.(12分)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.26.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=1.求sin∠ADB的值.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据图形旋转的性质得出△ABC≌△EBD,可得出BC=BD,根据图形旋转的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【题目详解】∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故选:A.【题目点拨】本题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质,熟知图形旋转不变性的性质是解答此题的关键.2、C【分析】证明△ABC是等腰直角三角形即可解决问题.【题目详解】解:∵AB=AC,
∴∠B=∠C,
∵∠A=2∠B,
∴∠B=∠C=45°,∠A=90°,
∴在Rt△ABC中,BC==AC,
∴sin∠B•sadA=,故选:C.【题目点拨】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.3、B【分析】根据平均数与方差的意义解答即可.【题目详解】解:,乙与丁二选一,又,选择乙.【题目点拨】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.4、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【题目详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B【题目点拨】此题考查切线的性质,弧长的计算,解题关键在于作辅助线5、D【分析】根据题意利用基本数量关系即商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【题目详解】解:由题意可列方程是:.故选:D.【题目点拨】本题考查一元二次方程的应用最基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格.6、B【解题分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【题目详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.【题目点拨】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.7、D【分析】由题意根据二次函数图象上点的坐标特征,把原点坐标代入解析式得到=0,然后解关于a的方程即可.【题目详解】解:因为二次函数图象过原点,所以把(0,0)代入二次函数得出=0,解得或,又因为二次函数图象开口向下,所以.故选:D.【题目点拨】本题考查二次函数图象上点的坐标特征,根据二次函数图象上点的坐标满足其解析式进行分析作答即可.8、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【题目详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率,故选:A.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9、B【分析】根据二次根式的性质即可化简.【题目详解】=-3故选B.【题目点拨】此题主要考查二次根式的化简,解题的关键实数的性质.10、D【分析】点与点关于点对称,为点与点的中点,根据中点公式可以求得.【题目详解】解:设点坐标为点与点关于点对称,为点与点的中点,即解得故选D【题目点拨】本题考查了坐标与图形变换,得出点、点与点之间的关系是关键.11、D【分析】反比例函数的图象时位于第一、三象限,在每个象限内,y随x的增大而减小;时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【题目详解】∵当时,∴点(,﹣8)在该函数的图象上正确,故A、B、C错误,不符合题意.故选:D.【题目点拨】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.12、B【分析】根据抛物线的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标,【题目详解】解:抛物线,该抛物线的顶点坐标为,故选:B.【题目点拨】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每题4分,共24分)13、-20;【分析】由比例的性质得到,从而求出a和b+c的值,然后代入计算,即可得到答案.【题目详解】解:∵,,∴,∴,,∴;故答案为:.【题目点拨】本题考查了比例的性质,解题的关键是熟练掌握比例的性质,正确得到,.14、-1【解题分析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案为:-1.15、2﹣2【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【题目详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【题目点拨】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.16、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【题目详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【题目点拨】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.17、【分析】连接OA,先根据垂径定理得出AE=AB,在Rt△AOE中,根据勾股定理求出AE的长,进而可得出结论.【题目详解】连接AO,∵CD是⊙O的直径,AB是弦,AB⊥CD于点E,∴AE=AB.∵CD=6,∴OC=3,∵CE=1,∴OE=2,在Rt△AOE中,∵OA=3,OE=2,∴AE=,∴AB=2AE=.故答案为:.【题目点拨】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18、【分析】设正方形ODEF的边长为,则E,B,再代入反比例函数求出k的值即可.【题目详解】设正方形ODEF的边长为,则E,B,
∵点B、E均在反比例函数的图象上,
∴解得:或(舍去),当时,.故答案为:.【题目点拨】本题是反比例函数与几何的综合,考查了反比例函数图象上点的坐标特点,正方形的性质,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共78分)19、(1)详见解析;(2).【分析】(1)连接,如图,由点为的中点可得,根据可得,可得,于是,进一步即可得出,进而可证得结论;(2)在中,利用解直角三角形的知识可求得半径的长,进而可得AD的长,然后在中利用∠D的正弦即可求出结果.【题目详解】解:(1)连接,如图,∵点为的中点,∴,∴.∵,∴,∴.∴.∵,∴.∴,即.∴是的切线;(2)在中,∵,∴设,则,则,解得:.∴,,∴.在中,∵,∴.【题目点拨】本题考查了圆的切线的判定、等腰三角形的性质、平行线的判定和性质以及解直角三角形的知识,属于中档题型,熟练掌握上述知识是解题的关键.20、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;
(2)把A点坐标代入得方程,于是得到结论;
(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论.【题目详解】(1)是顶点式,顶点坐标为;(2)∵抛物线经过点,
∴m=9m+2,
解得:,∴(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时,;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时,;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2<m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或时,抛物线与线段只有一个公共点.【题目点拨】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.21、(1)详见解析;(2).【分析】(1)连接OB,欲证是的切线,即要证到∠OBE=90°,而根据等腰三角形的性质可得到.再根据直角三角形的性质可得到,从而得到,从而得到,然后根据切线的判定方法得出结论即可.(2)先根据已知条件求出圆的半径,再根据扇形的面积计算公式计算出扇形OBC的面积,再算出三角形OBC的面积,则阴影部分的面积可求.【题目详解】(1)证明:如图,连接∵,,∴.∵,,∴在中,.∴∴在中,.∴,即.又∵为圆上一点,∴是圆的切线.(2)解:当时,.∵为圆的直径,∴.又∵,∴.在中,,即,解得.∴,∴【题目点拨】本题考查了切线的判定方法和弓形面积的计算方法,正确作出辅助线是解题的关键.22、(1)β=90°-2α(0°<α<45°);(2)α=β=30°【分析】(1)首先证明,在中,根据两锐角互余,可知;(2)连接OF交AC于O′,连接CF,只要证明四边形AFCO是菱形,推出是等边三角形即可解决问题.【题目详解】解:(1)连接OC.∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【题目点拨】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.23、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)当=4时,△PBC的面积最大,最大面积是1.【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为0,解一元二次方程即可求出A和B的坐标;
(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(,),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(,),利用面积公式得出关于x的二次函数,从而求得其最值.【题目详解】(1)∵抛物线的对称轴是直线,∴,解得,∴抛物线的解析式为:,当时,即,解之得:,,∴点A的坐标为(-2,0),点B的坐标为(8,0),故答案为:,点A的坐标为(-2,0),点B的坐标为(8,0);(2)当时,∴点C的坐标为(0,4)设直线BC的解析式为,将点B(8,0)和点C(0,4)的坐标代入得:,解之得:,∴直线BC的解析式为,假设存在,设点P的坐标为(,),过点P作PD∥轴,交直线BC于点D,交轴于点E,则点D的坐标为(,),如图所示,PD=-()=∴S△PBC=S△PDC+S△PDB====∵-1<0∴当=4时,△PBC的面积最大,最大面积是1.【题目点拨】本题属于二次函数综合题,综合考查了待定系数法求解析式,一次函数的应用,三角形的面积,解题的关键是学会构建二次函数解决最值问题.24、(1)x1=1+,x2=1﹣;(2)x1=﹣2.5,x2=1【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】x2﹣6x﹣6=0,∵a=1,b=-6,c=-6,∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=x1=1+,x2=1﹣;(2)2x2﹣x﹣15=0,(2x+5)(x﹣1)=0,2x+5=0,x﹣1=0,x1=﹣2.5,x2=1.【题目点拨】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.25、(1)二次函数解析式为y=(x﹣2)2﹣1;一次函数解析式为y=x﹣1.(2)1≤x≤2.【分析】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式.(2)根据图象和A、B的交点坐标可直接求出kx+b≥(x-2)2+m的x的取值范围.【题目详解】解:(1)将点A(1,0)代入y=(x﹣2)2+m得,(1﹣2)2+m=0,解得m=﹣1.∴二次函数解析式为y=(x﹣2)2﹣1.当x=0时,y=2﹣1=3,∴C点坐标为(0,3).∵二次函数y=(x﹣2)2﹣1的对称轴为x=2,C和B关于对称轴对称,∴B点坐标为(2,3).将A(1,0)、B(2,3)代入y=kx+b得,,解得.∴一次函数解析式为y=x﹣1.(2)∵A、B坐标为(1,0),(2,3),∴当kx+b≥(x﹣2)2+m时,直线y=x﹣1的图象在二次函数y=(x﹣2)2﹣1的图象上方或相交,此时1≤x≤2.26、(1)证明见解析;(2)证明见解析;(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院用心服务培训
- 通信工程安全知识培训
- 幼儿园教学部门培训
- 客户服务案例及技巧销售营销经管营销
- 梁硕南:劳动争议司法解释-
- 幼儿园秋学期中班班务总结
- 浙江省杭州地区(含周边)重点中学2024-2025学年高二上学期11月期中英语试题 含解析
- 老年病防控知识
- 肿瘤科护士个案护理
- 术中知晓的护理措施
- 2024年山东省青岛市中考地理试题卷(含答案及解析)
- 中班在农场里《饲养员请客》课件
- 互联网营销师教学计划和大纲
- 2023版广东省统表监理用表
- 第五单元简易方程 提升练习题(单元测试)-2024-2025学年五年级上册数学人教版
- 2024合同变更函模板
- 历史统编版中外历史纲要(上册) 第13课 从明朝建立到清军入关 教案
- 陕西省汉中市(2024年-2025年小学三年级语文)人教版小升初模拟(上学期)试卷(含答案)
- 人教版(2019)必修 第三册Unit 1 Festivals and Celebrations Reading and Thinking教学设计
- 退休延期留用协议书模板
- 第二次月考测评卷(5-6单元)(试题)-2024-2025学年六年级数学上册人教版
评论
0/150
提交评论