吉林省辽源市2024届数学九上期末达标测试试题含解析_第1页
吉林省辽源市2024届数学九上期末达标测试试题含解析_第2页
吉林省辽源市2024届数学九上期末达标测试试题含解析_第3页
吉林省辽源市2024届数学九上期末达标测试试题含解析_第4页
吉林省辽源市2024届数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省辽源市2024届数学九上期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,矩形的面积为4,反比例函数()的图象的一支经过矩形对角线的交点,则该反比例函数的解析式是()A. B. C. D.2.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.123.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE4.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点M是边BC上一动点(不与B、C重合).过点M的双曲线(x>0)交AB于点N,连接OM、ON.下列结论:①△OCM与△OAN的面积相等;②矩形OABC的面积为2k;③线段BM与BN的长度始终相等;④若BM=CM,则有AN=BN.其中一定正确的是()A.①④ B.①② C.②④ D.①③④5.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b6.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽1.8米,最深处水深1.2米,则此输水管道的直径是()A.1.5 B.1 C.2 D.47.已知,则下列比例式成立的是()A. B. C. D.8.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A. B. C. D.9.已知关于x的一元二次方程的一个根为1,则m的值为()A.1 B.-8 C.-7 D.710.若方程有两个不相等的实数根,则实数的值可能是()A.3 B.4 C.5 D.611.一元二次方程中的常数项是()A.-5 B.5 C.-6 D.112.方程x2-4=0的解是A.x=2 B.x=-2 C.x=±2 D.x=±4二、填空题(每题4分,共24分)13.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.14.如图,在矩形纸片中,将沿翻折,使点落在上的点处,为折痕,连接;再将沿翻折,使点恰好落在上的点处,为折痕,连接并延长交于点,若,,则线段的长等于_____.15.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____.16.已知二次函数y=ax2-bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是_________;若a+b的值为非零整数,则b的值为_________.17.已知反比例函数的图象如图所示,则_____

,在图象的每一支上,随的增大而_____.18.反比例函数y=的图象经过点(﹣2,3),则k的值为_____.三、解答题(共78分)19.(8分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).(1)直接写出甲投放的垃圾恰好是类垃圾的概率;(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.20.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.(1)求点C1在旋转过程中所经过的路径长.21.(8分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm22.(10分)在中,分别是的中点,连接求证:四边形是矩形;请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).23.(10分)如图,一个运动员推铅球,铅球在点A处出手,出手时球离地面m.铅球落地点在点B处,铅球运行中在运动员前4m处(即OC=4m)达到最高点,最高点D离地面3m.已知铅球经过的路线是抛物线,根据图示的平面直角坐标系,请你算出该运动员的成绩.24.(10分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?25.(12分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.26.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至处,观测指挥塔位于南偏西方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达处,再观测指挥塔位于南偏西方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)

参考答案一、选择题(每题4分,共48分)1、D【分析】过P点作PE⊥x轴于E,PF⊥y轴于F,根据矩形的性质得S矩形OEPF=S矩形OACB=1,然后根据反比例函数的比例系数k的几何意义求解.【题目详解】过P点作PE⊥x轴于E,PF⊥y轴于F,如图所示:

∵四边形OACB为矩形,点P为对角线的交点,

∴S矩形OEPF=S矩形OACB=×4=1.

∴k=-1,

所以反比例函数的解析式是:.故选:D【题目点拨】考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【题目详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.3、B【解题分析】试题分析:A.OA=OB=OE,所以点O为△ABE的外接圆圆心;B.OA=OC≠OF,所以点不是△ACF的外接圆圆心;C.OA=OB=OD,所以点O为△ABD的外接圆圆心;D.OA=OD=OE,所以点O为△ADE的外接圆圆心;故选B考点:三角形外心4、A【分析】根据k的几何意义对①②作出判断,根据题意对②作出判断,设点M的坐标(m,),点N的坐标(n,),从而得出B点的坐标,对③④作出判断即可【题目详解】解:根据k的几何意义可得:△OCM的面积=△OAN的面积=,故①正确;∵矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,没有其它条件,∴矩形OABC的面积不一定为2k,故②不正确∵设点M的坐标(m,),点N的坐标(n,),则B(n,),∴BM=n-m,BN=∴BM不一定等于BN,故③不正确;若BM=CM,则n=2m,∴AN=,BN=,∴AN=BN,故④正确;故选:A【题目点拨】考查反比例函数k的几何意义以及反比例函数图像上点的特征,矩形的性质,掌握矩形的性质和反比例函数k的几何意义是解决问题的前提.5、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【题目详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【题目点拨】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.6、B【解题分析】试题分析:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×1.8=1.4米,设OA=r,则OD=r﹣DE=r﹣1.2,在Rt△OAD中,OA2=AD2+OD2,即r2=1.42+(r﹣1.2)2,解得r=1.5米,故此输水管道的直径=2r=2×1.5=1米.故选B.考点:垂径定理的应用.7、C【分析】依据比例的性质,将各选项变形即可得到正确结论.【题目详解】解:A.由可得,2y=3x,不合题意;B.由可得,2y=3x,不合题意;C.由可得,3y=2x,符合题意;D.由可得,3x=2y,不合题意;故选:C.【题目点拨】本题主要考查了比例的性质,解决问题的关键是掌握:内项之积等于外项之积.8、D【解题分析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【题目详解】解:已知三角形的面积s一定,

则它底边a上的高h与底边a之间的函数关系为S=ah,即;

该函数是反比例函数,且2s>0,h>0;

故其图象只在第一象限.

故选:D.【题目点拨】本题考查反比例函数的图象特点:反比例函数的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.9、D【解题分析】直接利用一元二次方程的解的意义将x=1代入求出答案即可.【题目详解】∵关于x的一元二次方程x2+mx−8=0的一个根是1,∴1+m−8=0,解得:m=7.故答案选:D.【题目点拨】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.10、A【分析】根据一元二次方程有两个实数根可得:△>0,列出不等式即可求出的取值范围,从而求出实数的可能值.【题目详解】解:由题可知:解出:各个选项中,只有A选项的值满足该取值范围,故选A.【题目点拨】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与△的关系是解决此题的关键.11、C【分析】将一元二次方程化成一般形式,即可得到常数项.【题目详解】解:∵∴∴常数项为-6故选C.【题目点拨】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键.12、C【分析】方程变形为x1=4,再把方程两边直接开方得到x=±1.【题目详解】解:x1=4,∴x=±1.故选C.二、填空题(每题4分,共24分)13、【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可求解.【题目详解】设AB所在直线的解析式为:y=kx+b,把(1.5,70)与(2,0)代入得:,解得:,∴AB所在直线的解析式为:y=-140x+280,令x=0,得到y=280,即甲乙两地相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+60)千米,根据题意得:x+x+60=280,解得:x=110,即两车相遇时,乙行驶了110千米,甲行驶了170千米,∴甲车的速度为85千米/时,乙车速度为55千米/时,根据题意得:280﹣55×(280÷85)=(千米).则快车到达乙地时,慢车与甲地相距千米.故答案为:【题目点拨】本题主要考查根据函数图象的信息解决行程问题,根据函数的图象,求出AB所在直线的解析式是解题的关键.14、.【分析】根据折叠可得是正方形,,,,可求出三角形的三边为3,4,5,在中,由勾股定理可以求出三边的长,通过作辅助线,可证∽,三边占比为3:4:5,设未知数,通过,列方程求出待定系数,进而求出的长,然后求的长.【题目详解】过点作,,垂足为、,由折叠得:是正方形,,,,,∴,在中,,∴,在中,设,则,由勾股定理得,,解得:,∵,,∴∽,∴,设,则,,∴,,解得:,∴,∴,故答案为.【题目点拨】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.15、【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【题目详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【题目点拨】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.16、【分析】根据题意可得a<0,再由可以得到b>0,把(1,0)函数得a−b+2=0,导出b和a的关系,从而解出a的范围,再根据a+b的值为非零整数的限制条件,从而得到a,b的值.【题目详解】依题意知a<0,,a−b+2=0,故b>0,且b=a+2,a=b−2,a+b=a+a+2=2a+2,∴a+2>0,∴−2<a<0,∴−2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为−1,1,∴2a+2=−1或2a+2=1,或,∵b=a+2,或17、,增大.【解题分析】根据反比例函数的图象所在的象限可以确定k的符号;根据图象可以直接回答在图象的每一支上,y随x的增大而增大.【题目详解】根据图象知,该函数图象经过第二、四象限,故k<0;

由图象可知,反比例函数y=在图象的每一支上,y随x的增大而增大.

故答案是:<;增大.【题目点拨】本题考查了反比例函数的图象.解题时,采用了“数形结合”的数学思想.18、-1【解题分析】将点(−2,3)代入解析式可求出k的值.【题目详解】把(−2,3)代入函数y=中,得3=,解得k=−1.故答案为−1.【题目点拨】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.三、解答题(共78分)19、(1);

(2)乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.【分析】(1)甲投放的垃圾可能出现的情况为4种,以此得出甲投放的垃圾恰好是类垃圾的概率;(2)根据题意作出树状图,依据树状图找出所有符合的情况,求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【题目详解】(1)甲投放的垃圾共有A、B、C、D四种可能,所以甲投放的垃圾恰好是类垃圾的概率为;

(2)∴乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.【题目点拨】本题考查了概率事件以及树状图,掌握概率的公式以及树状图的作法是解题的关键.20、(1)①见解析;②见解析;(1)1π.【分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【题目详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.21、(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【题目详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【题目点拨】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.22、(1)证明见解析;(2)作图见解析.【解题分析】首先证明四边形是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.连接交于点,作射线即可.【题目详解】证明:分别是的中点,四边形是平行四边形,四边形是矩形连接交于点,作射线,射线即为所求.【题目点拨】本题考查三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.23、10m.【解题分析】由题可知该抛物线的顶点为(4,3),则可设顶点式解析式,再代入已知点A(0,)求解出a值,最后再求解B点坐标即可.【题目详解】解:能.∵,,∴顶点坐标为,设,代入A点坐标(0,),得:,∴,∴,即,令,得,∴,(舍去).故该运动员的成绩为.【题目点拨】本题主要考察了二次函数在实际中的运用,根据题意选择顶点式解决实际问题.24、(1)(,x为整数),(,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论