河南省南阳市宛西中学2022年高二数学文联考试题含解析_第1页
河南省南阳市宛西中学2022年高二数学文联考试题含解析_第2页
河南省南阳市宛西中学2022年高二数学文联考试题含解析_第3页
河南省南阳市宛西中学2022年高二数学文联考试题含解析_第4页
河南省南阳市宛西中学2022年高二数学文联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省南阳市宛西中学2022年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是(

)A.米/秒

B.米/秒

C.米/秒

D.米/秒参考答案:C2.椭圆上一点到一个焦点的距离等于,则它到相应的准线的距离为A.

B.

C.

D.参考答案:C3.设两个正态分布和的密度函数图像如图,则有(

)A.

B.C.

D.参考答案:A4.设有一个回归方程=6-6.5x,变量x每增加一个单位时,变量平均()A.增加6.5个单位 B.增加6个单位C.减少6.5个单位 D.减少6个单位参考答案:C由回归方程的性质结合题中的回归方程可得,变量x每增加一个单位时,变量平均减少6.5个单位.本题选择C选项.5.直线过点且与圆相切,则的斜率是

A.;

B.;

C.;

D..参考答案:D6.已知,,,则a,b,c的大小关系是(

)A. B.C. D.参考答案:B【分析】结合0,1进行a,b,c的大小比较,即可。【详解】,,故,故选B.【点睛】本道题考查了对数、指数比较大小,关键可以结合0,1进行大小比较,难度中等。7.我国即将进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同组建方法种数为(

)A.30 B.60C.90 D.120参考答案:D【分析】将5艘驱逐舰和3艘核潜艇分两类求解即可得到答案.【详解】由题意得2艘驱逐舰和1艘核潜艇,3艘驱逐舰和2艘核潜艇的组建方法种数为,2艘驱逐舰和2艘核潜艇,3艘驱逐舰和1艘核潜艇的组建方法种数为共60+60=120种,故选:D【点睛】本题考查排列组合的简单应用,属于基础题.8.已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于()A.cm3B.2cm3C.3cm3D.9cm3参考答案:A【考点】由三视图求面积、体积.【分析】该三棱锥高为3,底面为直角三角形.【解答】解:由三视图可知,该三棱锥的底面为直角三角形,两个侧面和底面两两垂直,∴V=××3×1×3=.故选A.9.掷两颗骰子得两个数,则事件“两数之和大于”的概率为A.

B.

C.

D.参考答案:D略10.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()x3456y2.5t44.5A.3 B.3.15 C.3.5 D.4.5参考答案:A【考点】BQ:回归分析的初步应用.【分析】先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【解答】解:∵由回归方程知=,解得t=3,故选A.二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,若圆上存在,两点关于点成中心对称,则直线的方程为

.参考答案:x+y—3=012.已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=225相切,双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点是该抛物线的焦点,则双曲线实轴长. 参考答案:12【考点】抛物线的简单性质. 【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程. 【分析】求出抛物线y2=2px(p>0)的准线方程,利用抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=225相切,可得p,利用双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点是该抛物线的焦点,=,a2+b2=144,即可求出双曲线实轴长. 【解答】解:抛物线y2=2px(p>0)的准线方程为x=﹣, ∵抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=225相切, ∴3+=15,∴p=24, ∵双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点是该抛物线的焦点, ∴=,a2+b2=144, ∴a=6,b=6, ∴2a=12, ∴双曲线实轴长为12. 故答案为:12. 【点评】本题考查双曲线实轴长,考查双曲线、抛物线的性质,属于中档题. 13.在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为________.参考答案:(-2,15)14.已知直线曲线相切则 .参考答案:15.代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得=

.参考答案:3【考点】类比推理.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.16.观察下列等式:=(﹣)×,=(﹣)×,=(﹣)×,=(﹣)×,…可推测当n≥3,n∈N*时,=.参考答案:(﹣)×略17.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共

种(用数字作答).参考答案:4186【考点】D3:计数原理的应用.【分析】根据题意,至少有3件次品可分为有3件次品与有4件次品两种情况,有4件次品抽法C44C461,有3件次品的抽法C43C462,根据分类计数原理得到结果.【解答】解:根据题意,“至少有3件次品”可分为“有3件次品”与“有4件次品”两种情况,有4件次品抽法C44C461有3件次品的抽法C43C462共有C44C461+C43C462=4186种不同抽法故答案为:4186【点评】本题考查分类计数原理,本题解题的关键是注意至少有3件次品包括2中情况,不要写出三种情况的错解,即加上有5件次品,本题是一个基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某种商品每件进价9元,售价20元,每天可卖出69件.若售价降低,销售量可以增加,且售价降低x(0≤x≤11)元时,每天多卖出的件数与x2+x成正比.已知商品售价降低3元时,一天可多卖出36件.(Ⅰ)试将该商品一天的销售利润表示成x的函数;(Ⅱ)该商品售价为多少元时一天的销售利润最大?参考答案:【考点】6K:导数在最大值、最小值问题中的应用;36:函数解析式的求解及常用方法;5D:函数模型的选择与应用.【分析】(Ⅰ)由题意设出每天多卖出的件数k(x2+x),结合售价降低3元时,一天可多卖出36件求得k的值,然后写出商品一天的销售利润函数;(Ⅱ)利用导数求出函数的极值点,求得极值,比较端点值后得到利润的最大值.【解答】解:(Ⅰ)由题意可设每天多卖出的件数为k(x2+x),∴36=k(32+3),∴k=3.又每件商品的利润为(20﹣9﹣x)元,每天卖出的商品件数为69+3(x2+x).∴该商品一天的销售利润为f(x)=(11﹣x)[69+3(x2+x)]=﹣3x3+30x2﹣36x+759(0≤x≤11).(Ⅱ)由f′(x)=﹣9x2+60x﹣36=﹣3(3x﹣2)(x﹣6).令f′(x)=0可得或x=6.当x变化时,f′(x)、f(x)的变化情况如下表:x06(6,11)11f′(x)

﹣0+0﹣

f(x)759↘极小值↗极大值975↘0∴当商品售价为14元时,一天销售利润最大,最大值为975元19.已知直线,直线,,两平行直线间距离为,而过点的直线被、截得的线段长为,求直线的方程.参考答案:解析:,得.,.故,.又与间距离为,,解得或(舍).故点坐标为.再设与的夹角为,斜率为,斜率为,,,,解得或.直线的方程为或.即或.20.(1)已知,a,b都是正数,且,求证:.(2)已知已知,且,求证:.参考答案:(1)见解析;(2)见解析【分析】(1)利用比较法证明,欲证,只要证即可,然后利用因式分解判断每个式子的正负即可;(2)由题意得:1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≤3(a2+b2+c2),即可证得结论.【详解】(1).∵都是正数,∴,又∵,∴;(2)∵a+b+c=1,∴1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≤3(a2+b2+c2),∴a2+b2+c2≥.【点睛】本题考查了不等式证明,熟悉公式和运用是解题的关键,属于中档题.21.设命题p:,命题q:x2﹣4x﹣5<0.若“p且q”为假,“p或q”为真,求x的取值范围.参考答案:【考点】复合命题的真假.【分析】分别求出p,q为真时的x的范围,根据p真q假、p假q真得到关于x的不等式组,解出即可.【解答】解:命题p为真,则有x<3;命题q为真,则有x2﹣4x﹣5<0,解得﹣1<x<5.由“p或q为真,p且q为假”可知p和q满足:p真q假、p假q真.所以应有或解得x≤﹣1或3≤x<5此即为当“p或q为真,p且q为假”时实数a的取值范围为(﹣∞,﹣1]∪[3,5).22.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图4的频率分布直方图.(1)求图中实数的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.参考答案:(1)解:由于图中所有小矩形的面积之和等于1,所以.……………1分解得.…………………2分(2)解:根据频率分布直方图,成绩不低于60分的频率为.…………3分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为人.………5分(3)解:成绩在分数段内的人数为人,分别记为,.………6分成绩在分数段内的人数为人,分别记为,,,.……7分若从数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论