版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省儋州市2024届数学九上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD2.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.抛物线的对称轴为直线()A. B. C. D.4.如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5 B.5:1 C.3:20 D.20:35.一个直角三角形的两直角边分别为x,y,其面积为1,则y与x之间的关系用图象表示为()A. B.C. D.6.下列事件属于随机事件的是()A.抛出的篮球会下落B.两枚骰子向上一面的点数之和大于1C.买彩票中奖D.口袋中只装有10个白球,从中摸出一个黑球7.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.48.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)9.已知的半径为,点到直线的距离为,若直线与公共点的个数为个,则可取()A. B. C. D.10.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差7.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).12.已知是方程的两个实数根,则的值是____.13.抛物线的顶点坐标是_______.14.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.15.如图,是的直径,弦则阴影部分图形的面积为_________.16.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于_________.17.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.18.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=_______.三、解答题(共66分)19.(10分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.20.(6分)如图,直线y=x+3分别交x轴、y轴于点A、C.点P是该直线与双曲线在第一象限内的一个交点,PB⊥x轴于B,且S△ABP=16.(1)求证:△AOC∽△ABP;(2)求点P的坐标;(3)设点Q与点P在同一个反比例函数的图象上,且点Q在直线PB的右侧,作QD⊥x轴于D,当△BQD与△AOC相似时,求点Q的横坐标.21.(6分)已知二次函数的图象经过三点(1,0),(-6,0)(0,-3).(1)求该二次函数的解析式.(2)若反比例函数的图象与二次函数的图象在第一象限内交于点A(),落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数的图象与二次函数的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.22.(8分)如图,是的直径,是的弦,延长到点,使,连结,过点作,垂足为.(1)求证:;(2)求证:为的切线.23.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.24.(8分)如图①,在中,,是边的中点,以点为圆心的圆经过点.(1)求证:与相切;(2)在图①中,若与相交于点,与相交于点,连接,,,如图②,则________.25.(10分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点.当点A在直线上运动时,抛物线W随点A作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线.点A是直线上的一个动点,且点A的横坐标为.以A为顶点的抛物线与直线的另一个交点为点B.(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C.以C为顶点的抛物线与直线的另一个交点为点D.①当AC⊥BD时,求的值;②若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180°)时,直接写出满足条件的的取值范围.26.(10分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.(1)求与之间的函数解析式,并写出自变量的取值范围;(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【题目详解】添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.【题目点拨】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.2、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【题目详解】B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合.故选A.3、C【解题分析】根据二次函数对称轴公式为直线,代入求解即可.【题目详解】解:抛物线的对称轴为直线,故答案为C.【题目点拨】本题考查了二次函数的对称轴公式,熟记公式是解题的关键.4、C【分析】根据已知条件先求得S△ABE:S△BED=3:2,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【题目详解】解:∵AE:ED=3:2,
∴AE:AD=3:5,
∵∠ABE=∠C,∠BAE=∠CAD,
∴△ABE∽△ACD,
∴S△ABE:S△ACD=9:25,
∴S△ACD=S△ABE,
∵AE:ED=3:2,
∴S△ABE:S△BED=3:2,
∴S△ABE=S△BED,
∴S△ACD=S△ABE=S△BED,
∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,
∴S△BDE:S△ABC=3:20,
故选:C.【题目点拨】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.5、C【解题分析】试题分析:根据题意有:xy=2;故y与x之间的函数图象为反比例函数,且根据xy实际意义x、y应大于0,其图象在第一象限,即可判断得出答案.解:∵xy=1∴y=(x>0,y>0).故选C.考点:反比例函数的应用;反比例函数的图象.6、C【解题分析】根据随机事件,必然事件,不可能事件概念解题即可.【题目详解】解:A.抛出的篮球会下落,是必然事件,所以错误,B.两枚骰子向上一面的点数之和大于1,是不可能事件,所以错误,C.买彩票中奖.是随机事件,正确,D.口袋中只装有10个白球,从中摸出一个黑球,,是不可能事件,所以错误,故选C.【题目点拨】本题考查了随机事件的概念,属于简单题,熟悉概念是解题关键.7、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【题目详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【题目点拨】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.8、C【解题分析】试题解析:∵三角板绕原点O顺时针旋转75°,
∴旋转后OA与y轴夹角为45°,
∵OA=2,
∴OA′=2,
∴点A′的横坐标为2×=,
纵坐标为-2×=-,
所以,点A′的坐标为(,-)故选C.9、A【分析】根据直线和圆的位置关系判断方法,可得结论.【题目详解】∵直线m与⊙O公共点的个数为2个,
∴直线与圆相交,
∴d<半径,∴d<3,
故选:A.【题目点拨】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d:①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.10、B【分析】根据平均数与方差的意义解答即可.【题目详解】解:,乙与丁二选一,又,选择乙.【题目点拨】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.二、填空题(每小题3分,共24分)11、<【解题分析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.12、1【分析】根据一元二次方程根与系数的关系可得出,,再代入中计算即可.【题目详解】解:∵是方程的两个实数根,∴,,∴,故答案为:1.【题目点拨】本题考查了一元二次方程根与系数的关系,解题的关键是熟知:若是一元二次方程的两个根,则,.13、(5,3)【分析】根据二次函数顶点式的性质直接求解.【题目详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【题目点拨】本题考查二次函数性质其顶点坐标为(h,k),题目比较简单.14、y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【题目详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【题目点拨】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.15、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【题目详解】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,∴阴影部分的面积S=S扇形COB=,
故答案为:.【题目点拨】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.16、【解题分析】分析:利用概率公式:一般地,如果在一次试验中,有n种可能得结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,即要求解.详解:∵骰子的六个面上分别刻有1到6的点数,点数为2的倍数的有3个,分别为2、4、6;∴掷得朝上一面的点数为2的倍数的概率为:.故答案为:.点睛:本题考查了概率公式的知识,解题的关键是利用概率=所求情况数与总数之比进行求解.17、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【题目详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【题目点拨】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.18、【分析】作CD⊥AB于点D,先在Rt△ACD中求得CD的长,再解Rt△BCD即得结果.【题目详解】如图,作CD⊥AB于点D:,∠A=30°,,得,,∠B=45°,,解得考点:本题考查的是解直角三角形点评:解答本题的关键是作高,构造直角三角形,正确把握公共边CD的作用.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)8米【解题分析】【试题分析】(1)点B在地面上的投影为M.故连接MB,并延长交OP于点P.点P即为所求;(2)连接PD,并延长交OM于点N.CN即为所求;(3)根据相似三角形的性质,易得:,即,解得.从而得求.【试题解析】如图:如图:,∽,,即,解得.即路灯灯泡P到地面的距离是8米.
【方法点睛】本题目是一道关于中心投影的问题,涉及到如何确定点光源,相似三角形的判定,相似三角形的性质,难度中等.20、(1)证明见解析;(2)点P的坐标为(2,4);(3)点Q的横坐标为:或.【分析】(1)利用PB∥OC,即可证明三角形相似;(2)由一次函数解析式,先求点A、C的坐标,由△AOC∽△ABP,利用线段比求出BP,AB的值,从而可求出点P的坐标即可;(3)把P坐标代入求出反比例函数,设Q点坐标为(n,),根据△BQD与△AOC相似分两种情况,利用线段比联立方程组求出n的值,即可确定出Q坐标.【题目详解】(1)证明:∵PB⊥x轴,OC⊥x轴,∴OC∥PB,∴△AOC∽△ABP;(2)解:对于直线y=x+3,令x=0,得y=3;令y=0,得x=-6;∴A(-6,0),C(0,4),∴OA=6,OC=3.∵△AOC∽△ABP,∴,∵S△ABP=16,S△AOC=,∴,∴,即,∴PB=4,AB=8,∴OB=2,∴点P的坐标为:(2,4).(3)设反比例函数的解析式为:y=,把P(2,4)代入,得k=xy=2×4=8,∴y=.点Q在双曲线上,可设点Q的坐标为:(n,)(n>2),则BD=,QD=,①当△BQD∽△ACO时,,即,整理得:,解得:或;②当△BQD∽△CAO时,,即,整理得:,解得:,(舍去),综上①②所述,点Q的横坐标为:1+或1+.【题目点拨】此题属于反比例函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,一次函数与反比例函数的交点,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.21、(1);(2)1与2;(3)【分析】(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式;(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的的值,进而可写出所求的两个正整数即可;(3)点B的横坐标为m,满足3<m<4,可通过m=3,m=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.【题目详解】解:(1)∵二次函数图像经过(1,0),(-6,0),(0,-3),∴设二次函数解析式为,将点(0,3)代入解析式得,∴;∴,即二次函数解析式为;(2)如图,根据二次函数与反比例函数在第一象限的图像可知,当时,有;当时,有,故两函数交点的横坐标落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)根据函数图像性质可知:当时,对,随着的增大而增大,对,随着的增大而减小,∵点B为二次函数与反比例函数交点,∴当时,,即,解得,同理,当时,,即,解得,∴的取值范围为;【题目点拨】本题主要考查了二次函数和反比例函数综合应用,掌握二次函数,反比例函数是解题的关键.22、(1)见解析;(2)见解析【分析】(1)连接AD,则AD⊥BC,再由已知,可推出是的垂直平分线,再根据垂直平分线的性质即可得出结论.(2)连接OD,证明OD⊥DE即可.根据三角形中位线定理和平行线的性质可以证明.【题目详解】解:(1)证明:连接∵是的直径∴又∴是的垂直平分线(2)连接∵点、分别是的中点∴又∴∴为的切线;【题目点拨】本题考查了直径所对的圆周角是直角,垂直平分线的性质,切线的判定等,准确作出辅助线是解题的关键.23、(1)(2).【分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.24、(1)见解析;(2)【分析】(1)连接OC,利用等腰三角形的三线合一性质证明即可.(2)利用30°的特殊三角形的性质求出即可.【题目详解】(1)证明:连接.,是边的中点,.又点在上,与相切.图①(2)∵∠AOB=120°,OA=OB,∴∠A=30°,又∵OD=6∴OA=12∴AC=,AB=∵DE是三角形OAB的中位线,∴DE=.图②【题目点拨】本题考查圆与三角形的结合,关键在于熟悉基础知识.25、(1);(2);(3)①;②的取值范围是或.【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;
(2)△OAB的面积一定,当OA最小时,B到OA的距离即△OAB中OA边上的高最大,此时OA⊥AB,据此即可求解;
(3)①方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1).由点D在抛物线C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;
方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2),根据BD⊥AC,可得t-1=2t-,解方程即可得到t的值;
②设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围.【题目详解】解:(1)∵点A在直线l1:y=x-2上,且点A的横坐标为3,
∴点A的坐标为(3,-2),
∴抛物线C1的解析式为y=-x2-2,
∵点B在直线l1:y=x-2上,
设点B的坐标为(x,x-2).
∵点B在抛物线C1:y=-x2-2上,
∴x-2=-x2-2,
解得x=3或x=-1.
∵点A与点B不重合,
∴点B的坐标为(-1,-3),
∴由勾股定理得AB=.
(2)当OA⊥AB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则
,解得:,
则点A的坐标为(1,-1).(3)①方法一:设,交于点,直线,与轴、轴交于点和(如图1).则点和点的坐标分别为,.∴.∵.∵轴,∴轴.∴.∵,,∴.∵点在直线上,且点的横坐标为,∴点的坐标为.∴点的坐标为.∵轴,∴点的纵坐标为.∵点在直线上,∴点的坐标为.∴抛物线的解析式为.∵,∴点的横坐标为,∵点在直线上,∴点的坐标为.∵点在抛物线上,∴.解得或.∵当时,点与点重合,∴方法二:设直线l1:y=x-2与x轴交于点P,过点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城乡污水处理和管网建设工程项目可行性研究报告写作模板-申批备案
- 2025年江西陶瓷工艺美术职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年昆明铁道职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年揭阳职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年氢能源行业发展动态与前景分析
- 展览展示服务合同模板
- 幼儿园支教工作活动方案总结四篇
- 计件工资劳动合同范文
- 酒店转让简单合同范本
- 场摊位的租赁合同年
- 2025年度高端商务车辆聘用司机劳动合同模板(专业版)4篇
- GB/T 45107-2024表土剥离及其再利用技术要求
- 2025长江航道工程局招聘101人历年高频重点提升(共500题)附带答案详解
- 2025年黑龙江哈尔滨市面向社会招聘社区工作者1598人历年高频重点提升(共500题)附带答案详解
- 《妊娠期恶心呕吐及妊娠剧吐管理指南(2024年)》解读
- 《黑神话:悟空》跨文化传播策略与路径研究
- 《古希腊文明》课件
- 居家养老上门服务投标文件
- 长沙市公安局交通警察支队招聘普通雇员笔试真题2023
- 2025年高考语文作文满分范文6篇
- 零售业连锁加盟合同
评论
0/150
提交评论