辽宁省东港市2024届数学九年级第一学期期末综合测试模拟试题含解析_第1页
辽宁省东港市2024届数学九年级第一学期期末综合测试模拟试题含解析_第2页
辽宁省东港市2024届数学九年级第一学期期末综合测试模拟试题含解析_第3页
辽宁省东港市2024届数学九年级第一学期期末综合测试模拟试题含解析_第4页
辽宁省东港市2024届数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省东港市2024届数学九年级第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,2.如图,四边形的顶点坐标分别为.如果四边形与四边形位似,位似中心是原点,它的面积等于四边形面积的倍,那么点的坐标可以是()A. B.C. D.3.下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生4.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大. D.当y增大时,BE·DF的值不变.5.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.46.已知点A(,m),B(l,m),C(2,1)在同一条抛物线上,则下列各点中一定在这条抛物线上的是(

)A. B. C. D.7.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数8.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是()A.100(1+2x)=150 B.100(1+x)2=150C.100(1+x)+100(1+x)2=150 D.100+100(1+x)+100(1+x)2=1509.如图,在中,点分别在边上,且,则下列结论不一定成立的是()A. B. C. D.10.下列说法错误的是()A.必然事件的概率为1 B.心想事成,万事如意是不可能事件C.平分弦(非直径)的直径垂直弦 D.的平方根是11.抛物线经过点与,若,则的最小值为()A.2 B. C.4 D.12.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上二、填空题(每题4分,共24分)13.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.14.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为_____cm.16.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.17.点A(1,-2)关于原点对称的点A1的坐标为________.18.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.三、解答题(共78分)19.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)20.(8分)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)用画树状图法或列表法分析这两辆汽车行驶方向所有可能的结果;(2)求一辆车向右转,一辆车向左转的概率;(3)求至少有一辆车直行的概率.21.(8分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.22.(10分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE最大.①求点P的坐标和PE的最大值.②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.23.(10分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?24.(10分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.(1)求二次函数的表达式;(2)当时,直接写出的取值范围;(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.25.(12分)解方程:(x+2)(x-5)=1.26.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【题目详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【题目点拨】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.2、B【分析】根据位似图形的面积比得出相似比,然后根据各点的坐标确定其对应点的坐标即可.【题目详解】解:∵四边形OABC与四边形O′A′B′C′关于点O位似,且四边形的面积等于四边形OABC面积的,∴四边形OABC与四边形O′A′B′C′的相似比为2:3,∵点A,B,C分别的坐标),∴点A′,B′,C′的坐标分别是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).

故选:B.【题目点拨】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况.3、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【题目详解】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为,,说明甲的跳远成绩比乙稳定,B错误;C.一组数据,,,的众数是,中位数是,正确;D.可能性是的事件在一次试验中可能会发生,D错误.故选C.【题目点拨】本题考查了统计的应用,正确理解概率的意义是解题的关键.4、D【解题分析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=,当y=9时,,即EC=,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,EC=,CF=,即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.5、B【解题分析】根据三角形中位线定理和三角形的面积即可得到结论.【题目详解】∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.【题目点拨】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.6、B【分析】根据抛物线的对称性进行分析作答.【题目详解】由点A(,m),B(l,m),可得:抛物线的对称轴为y轴,∵C(2,1),∴点C关于y轴的对称点为(-2,1),故选:B.【题目点拨】本题考查二次函数的图象和性质,找到抛物线的对称轴是本题的关键.7、D【解题分析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答.【题目详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为,错误.(2)B事件的概率为,错误.(3)C事件概率为,错误.(4)D事件的概率为,正确.故选D.【题目点拨】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.8、B【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【题目详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)1=150,故选:B.【题目点拨】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.9、B【分析】根据相似三角形平行线分线段成比例的性质,分别判定即可.【题目详解】∵∴∠A=∠CEF,∠ADE=∠ABC,∠CFE=∠ABC,,∴∠ADE=∠CFE,,C选项正确;∴△ADE∽△EFC∴,A选项正确;又∵∴,D选项正确;∵∴不成立故答案为B.【题目点拨】此题主要考查相似三角形平行线分线段成比例的运用,熟练掌握,即可解题.10、B【分析】逐一对选项进行分析即可.【题目详解】A.必然事件的概率为1,该选项说法正确,不符合题意;B.心想事成,万事如意是随机事件,该选项说法错误,符合题意;C.平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D.的平方根是,该选项说法正确,不符合题意;故选:B.【题目点拨】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.11、D【分析】将点A、B的坐标代入解析式得到y1与y2,再根据,即可得到答案.【题目详解】将点A、B的坐标分别代入,得,,∵,∴,得:b,∴b的最小值为-4,故选:D.【题目点拨】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.12、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【题目详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【题目详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【题目点拨】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【题目详解】解:如图,过O作OD⊥AB于C,交⊙O于D,

∵CD=4,OD=10,

∴OC=6,

又∵OB=10,

∴Rt△BCO中,BC=∴AB=2BC=1.

故答案是:1.【题目点拨】此题主要考查了垂径定理以及勾股定理,得出BC的长是解题关键.15、【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【题目详解】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为16.【题目点拨】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16、【题目详解】解:选中女生的概率是:.17、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【题目详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【题目点拨】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.18、(2,10)或(﹣2,0)【解题分析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).三、解答题(共78分)19、(20-5)千米.【解题分析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.详解:过点B作BD⊥AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C两地的距离为(20-5)千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20、(1)见解析;(2)(一辆车向右转,一辆车向左转).(3)(至少有一辆汽车直行).【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)根据(1)中所画的树状图,即可求出答案;(3)根据(1)中所画的树状图,即可求出答案.【题目详解】解:(1)如图:可以看出所有可能出现的结果共9种,即:直左,直直,直右,左左,左直,左右,右直,右左,右右.它们出现的可能性相等.(2)一辆车向右转,一辆车向左转的结果有2种,即:左右,右左.∴P(一辆车向右转,一辆车向左转).(3)至少有一辆汽车直行的结果有5种,即:左直,直左,直直,直右,右直.∴P(至少有一辆汽车直行).【题目点拨】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21、(1);(2)【分析】(1)共有4个补给站,所以小明选择补给站C(球王故里)的概率是;(2)用树状图或列表表示出所有的情况数,从中找出小明和小红恰好选择同一个补给站的情况数,利用概率公式求解即可.【题目详解】解:(1)在这4个补给站中任意选择一个补给站服务,每个补给站被选择的可能性相同,∴小明选择补给站C(球王故里)的概率是;(2)画树状图分析如下:共有16种等可能的结果,小明和小红恰好选择同一个补给站的结果有4种,∴小明和小红恰好选择同一个补给站的概率为=.【题目点拨】本题主要考查树状图或列表法求随机事件的概率,掌握概率公式是解题的关键.22、(1)y=﹣x2﹣3x+4;(2)①,P②M(,)或(,)【解题分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①根据A(﹣2,6),B(1,0),求得AB的解析式为:y=﹣2x+2,设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),利用PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣(a+)2+,根据二次函数的图像与性质即求解;②根据点M在以AB为直径的圆上,得到∠AMB=90°,即AM2+BM2=AB2,求出,,AB2故可列出方程求解.【题目详解】解:(1)∵B(1,0)∴OB=1,∵OC=2OB=2,∴BC=3,C(﹣2,0)Rt△ABC中,tan∠ABC=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),∴PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣a2﹣a+2=﹣(a+)2+∴当a=时,PE=,此时P(,)②∵M在直线PD上,且P(,),∴+AB2=32+62=45,∵点M在以AB为直径的圆上此时∠AMB=90°,∴AM2+BM2=AB2,∴++=45解得:,∴M(,)或(,)【题目点拨】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想的应用.23、(1);(2);(3)当或时,满足条件的点只有一个.【解题分析】(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.(3)由圆周角定理可得是顶角为120°的等腰三角形,再分情况讨论:①当与相切时,结合题意画出图形,过点作,并延长与交于点,连结,,设半径为,由相似三角形的判定和性质即可求得长;②当经过点时,结合题意画出图形,过点作,设半径为,在中,根据勾股定理求得,再由相似三角形的判定和性质即可求得长;③当经过点时,结合题意画出图形,此时点与点重合,且恰好在点处,由此可得长.【题目详解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,过,,作外接圆,圆心为,∴是顶角为120°的等腰三角形.①当与相切时,如图1,过点作,并延长与交于点,连结,设的半径则,,解得.∴,.易知,可得,则∴.②当经过点时,如图2,过点作,垂足为.设的半径,则.在中,,解得,∴易知,可得③当经过点时,如图3,此时点与点重合,且恰好在点处,可得.综上所述,当或时,满足条件的点只有一个.【题目点拨】本题属于相似形综合题,考查了相似三角形的判定和性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论