《二次函数的应用》_第1页
《二次函数的应用》_第2页
《二次函数的应用》_第3页
《二次函数的应用》_第4页
《二次函数的应用》_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数的应用

根据图像性质解决实际问题《二次函数的应用》OxyyOxxyOyxO你能联想到什么吗?《二次函数的应用》学习目标:1、通过建立适当的平面直角坐标系,求实际问题中的二次函数关系式,并运用二次函数的图象和性质解决实际问题2、通过探索问题的过程获得利用数学方法解决实际问题的经验,获得用二次函数知识解决实际问题的方法。《二次函数的应用》你对有哪些认识?赵州桥说一说闻名中外的赵州桥是我国隋朝工匠李春和众多石匠发明并建造的一座扁平抛物线石拱桥.赵州桥是我国造桥史上的杰作,世界桥梁史上的首创,是世界著名的古代石拱桥,到现在已经一千三百多年了,比欧洲早了近1300年.赵州桥在桥梁建筑史上占有重要的地位,对我国后代桥梁建筑有着深远的影响.读一读《二次函数的应用》赵州桥桥拱跨径约38m,拱高约7m.你能建立适当的直角坐标系并写出与该抛物线桥拱对应的二次函数关系式吗?试试看.xyoA(19,-7)1.先建立直角坐标系;以桥拱的最高点为原点,过原点的水平线为横轴,建立直角坐标系.2.求抛物线对应的二次函数关系式.设函数关系式为:y=ax2《二次函数的应用》yxO方法1yO方法2yxO方法3《二次函数的应用》你能不能帮帮我?如图,某景区的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4m。

一辆满载货物的汽车欲通过大门,货物顶部距地面2.65m,装货宽度为2.4m,那么这辆汽车能否顺利通过大门?我能过去吗?

小组合作:1、汽车以怎样的方式通过?2、汽车通过通不过,与什么有关系?3、怎样建立适当的平面直角坐标系?AOC《二次函数的应用》如图,某公司的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4m建立适当的直角坐标系,求抛物线对应的解析式ABCo解决问题yx解:如图,以AB所在的直线为X轴,以AB的垂直平分线为y轴建立直角坐标系,由题意知,点B(2,0),A(-2,0),顶点C(0,4.4)点B(2,0)的坐标代入得解得qxqy《二次函数的应用》yxABC如图,某公司的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4m建立适当的直角坐标系,求抛物线对应的解析式解:如图,以AB所在的直线为X轴,A为原点建立直角坐标系由题意知,点B(4,0),点A(0,0)顶点C(2,4.4)把C点的坐标代入得把A点的坐标代入得解得:a=-1.1解决问题解《二次函数的应用》yCABX解决问题如图,某公司的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4m建立适当的直角坐标系,求抛物线对应的解析式解:如图,以最高点C为原点,过C点与地面平行的直线为X轴,建立直角坐标系,由题意知,点B(2,-4.4),A(-2,-4.4),顶点C(0,0)点B(2,-4.4)的坐标代入得解得《二次函数的应用》如图,某公司的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4。(2)一辆满载货物的汽车欲通过大门,货物顶部距地面2.65m,装货宽度为2.4m,那么这辆汽车能否顺利通过大门?ABCyxo2.652.4y=2.65MN解:令y=2.65,得:解得:x2=X1≈1.26X2≈-1.26所以:MN≈2×1.26=2.52∵2.4<2.52∴汽车能顺利通过大门解决问题《二次函数的应用》如图,某公司的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4。(2)一辆满载货物的汽车欲通过大门,货物顶部距地面2.65m,装货宽度为2.4m,那么这辆汽车能否顺利通过大门?ABCyxo2.652.4x=1.2P解:令X=1.2,得:解决问题《二次函数的应用》yxABC如图,某公司的大门呈抛物线型,大门地面宽AB为4m,顶部C距地面的高度为4.4。(2)一辆满载货物的汽车欲通过大门,货物顶部距地面2.65m,装货宽度为2.4m,那么这辆汽车能否顺利通过大门?2.652.4x=P3.2解决问题《二次函数的应用》《二次函数的应用》XY0BCA问题探究:公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O点恰在水面中心,OA=1.25米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下。为使水流较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米。如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流落不到池外?《二次函数的应用》议一议:回顾本节课的两个问题的解法,你能总结出此类问题的一般解法吗?(1)建立适当的平面直角坐标系;(2)根据题意,确定相关点的坐标;(3)利用待定系数法,求出函数解析式;(4)根据图象及性质解决实际问题。《二次函数的应用》1、美国圣路易斯市有一座巨大的拱门,这座拱高和底宽都是192m的不锈钢拱门是美国开发西部的标志性建筑.如果把拱门看作一条抛物线,建立恰当的直角坐标系,并写出与这条抛物线对应的二次函数关系式吗?美国标志性建筑-圣路易斯“大拱门”做一做xyA《二次函数的应用》2、一座抛物线拱桥,桥下的水面离桥孔顶部3m时,水面宽6m.(1)试在如图所示的直角坐标系中求出该抛物线桥拱对应的二次函数关系式;(2)当水位上升1m时,水面宽多少(精确到0.1m)?xyOABDC(3,-3)(?,-2)做一做《二次函数的应用》今天,你学会了什么?实际问题抽象转化数学问题运用数学知识问题的解返回解释检验《二次函数的应用》

如图,是某隧道,其截面是由一抛物线和一矩形构成,矩形的长为8m,宽为2米,隧道为单行线,最高为6米.(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线的关系式;(2)在隧道拱的两侧距地面3m高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;(3)现有一辆汽车,装载货物后,高4m,宽2m,该车能否通过这个隧道?请说明理由.(4)如果该隧道内的路面为双车道,那么这辆货运卡车是否可以通过。

测一测《二次函数的应用》数学是来源于生活又服务于生活的.3.2米8米小燕去参观一个蔬菜大棚,大棚的横截面为抛物线,有关数据如图所示。小燕身高1.40米,在她不弯腰的情况下,横向活动范围是多少?《二次函数的应用》

如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。

ABCD0.71.62.20.4EFOxy《二次函数的应用》下课了!《二次函数的应用》

你知道吗?我们跳长绳时,绳甩到最高处的形状为抛物线.如图,现有在甩绳的甲、乙两名同学拿绳的手间距离为4m,手距地面均为1m,学生丙、丁分别站在距甲水平距离1m、2.5m处.绳子在甩到最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论