因式分解学案_第1页
因式分解学案_第2页
因式分解学案_第3页
因式分解学案_第4页
因式分解学案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

因式分解一、复习回忆:问题一整式乘法有几种形式?问题二乘法公式有哪些?(1)单项式乘以单项式(1)平方差公式::(2)单项式乘以多项式:a(m+n)=(2)完全平方公式:(3)多项式乘以多项式:(a+b)(m+n)=二、自主学习:1、计算:(1)(2)(m+4)(m-4)=__________;(3)(y-3)2=__________;(4)3x(x-1)=__________;(5)m(a+b+c)=__________;(6)a(a+1)(a-1)=__________。2、若a=101,b=99,则=___________;若a=99,b=-1,则=_______;若x=-3,则=小结:一般地,把一种含字母的表到达若干个多项式的的形式,称把这个多项式因式分解。思索:由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与上面的变形有什么不一样?因式分解与整式的乘法有什么区别和联络?三、合作探究:练习、下列代数式变形中,哪些是因式分解?哪些不是?为何?(1)-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);(3)2m(m-n)=2-2mn;(4)4-4x+1=;(5)3+6a=3a(a+2);(6)(7);(8)bc=3b·6ac。3、下列说法不对的的是()A.是的一种因式B.是的一种因式C.的因式是和D.的一种因式是4、计算:(1)+87×13(2)5、若x2+mx-n能分解成(x-2)(x-5),则m=

,n=

提公因式法因式分解多项式am+bm+cm中各项都具有因式m,m就是这个多项式的公因式。小结:什么叫公因式?什么叫提公因式法?假如一种多项式的各项都具有_某个因式,那么就可以把这个因式提出来,从而将多项式化成两个或几种整式积形式,这种分解因式的措施叫做提公因式法.把下列多项式写成整式的乘积的形式x2+x=_________

(2)am+bm+cm=__________<一>、基础知识探究:①多项式mn+mb中各项具有相似因式吗?②请将下列多项式分别写成两个因式的乘积的形式,并阐明理由.mn+mb=

4x2-x=

xy2-yz-y=总结:用提公因式法分解因式的技巧:各项有“公”先提“公”,首项有负常提负,某项提完莫漏1,括号里面分到“底”。<二>、例1:下列从左到右的变形与否是因式分解?(1)2x2+4=2(x2+2)(2)2t2-3t+1=(2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.

2、请同学们指出下列各多项式中各项的公因式:ax+ay+a3mx-6mx24a2+10ah4x2-8x6x2y+xy2

12xyz-9x2y2

16a3b2-4a3b2-8ab4

总结:找最大公因式的措施:①公因式的系数取各项系数的

;②公因式字母取各项

的字母;③公因式字母的指数取相似字母的最

次幂.概括为“三定”:(1)定系数;(2)定字母;(3)定指数例2:把9x2–6xy+3xz分解因式.例3:下面的解法有误吗?如有错误请改正。把8a3b2–12ab3c+ab分解因式.解:8a3b2–12ab3c+ab=ab•8a2b-ab•12b2c+ab•1=ab(8a2b-12b2c)练习:1、将下列多项式分解因式

①8a3b2+12ab2c

②–3m3+9m2-12mn

③3x3-6xy+x

④-4a3+16a2-18

2、将下列多项式分解因式

①a2b–2ab2+ab

②–48mn–24m2n3

用简便的措施计算:①0.84×12+12×0.6-0.44×12.

②992+99

小结:运用提公因式法因式分解,关键是找准

.在找最大公因式时应注意:

(1)

(2)

(3)

一、自主学习:1、下列各式中的公因式是什么?(1)a(x+y)+b(x+y)(2)x(a+3)-y(a+3)(3)6m(p-3)+5n(p-3)(4)x(m-n)-2y(m-n)(5)x(a+b)+y(a+b)-z(a+b)2、判断:下列各式哪些成立?你能得到什么结论?二、合作探究:例1:把a(x-3)+2b(x-3)分解因式思索:提公因式时,公因式可以是多项式吗?例2:把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2在下列各横线上填上“+”或“-”,使等式成立.(1);(2);(3).2、分解因式:3、分解下列因式:4、分解下列因式:5、设,求代数式的值。公式法因式分解1、填空①25x2=(_____)2②36a4=(_____)2③0.49b2=(_____)2④64x2y2=(_____)2⑤=(_____)2口算:(x+5)(x-5)=(3x+y)(3x-y)=(1+3a)(1-3a)=(a+b)(a-b)=a2-b2=二、自主学习:1、把乘法公式(a+b)(a-b)=a2-b2倒过来,就得到,把它作为公式,可以把某些多项式进行因式分解,这种因式分解的措施叫做。2、把下列各式因式分解:(1)25-16x2三、合作探究:1、运用平方差公式分解因式。例1、下列多项式中,能运用平方差公式进行分解因式的是:x2+2x+3 B、-x2-y2 C、-169+a4 D、9x2-7y例2、把下列各式分解因式。(1);(2)(a+b)2-1;(3)(ax+b)2-4c22、分解因式措施的综合运用。例3、分解因式:a3-ab2例4:计算:5752×12-4252×12=。练习:1、.2、因式分解(x-1)2-9的成果是()A、(x+8)(x+1) B、(x+2)(x-4) C、(x-2)(x+4) D、(x-10)(x+8)3、多项式a2+b2,a2-b2,-a2+b2,-a2-b2中能用平方差公式分解因式的有()A、1个 B、2个 C、3个 D、4个4、假如多项式4a4-(b-c)2=M(2a2-b+c),则M表达的多项式是()A、2a2b+c B、2a2-b-c C、2a2+b-c D、2a2+b+c5、下列多项式中,能用公式法分解因式的是()A、x2-xy B、x2+xy C、x2-y2 D、x2+y26、m2+n2是下列多项式()中的一种因式A、m2(m-n)+n2(n-m) B、m4-n4C、m4+n4 D、(m+n)2·(m-n)27、下列分解因式错误的是()A、-a2+b2=(b+a)(b-a) B、9x2-4=(3x+4)(3x-4)C、x4-16=(x2+4)(x+2)(x-2) D、x2-(x-y)2=y(2x-y)下列多项式中:①;②;③;④;⑤,能用平方差公式进行因式分解的有()个.A.1B.2C.3D.49、分解因式:x2-9=;2m2-8n2=;__________;________________;______;___;_____.11、请你写一种能先提公因式再运用公式来分解因式的三项式,并写出分解因式的成果。复习:1、(a+b)2==(a-b)2=用文字表达为:。2、完全平方式有何特点?下列各式是完全平方式吗?请阐明理由。(a+b)2+2(a+b)+1二、自主学习:1、形如或的式子叫做完全平方式。由因式分解与整式乘法的关系可以看出,假如把反过来,,那么就可以把某些多项式分解因式,这种分解因式的措施叫做运用公式法。2、把下列完全平方式分解因式:(1)x2+14x+49;(2)-x2-4y2+4xy.三、合作探究:例1:在下列式子中填上合适的数,使等式成立。1、x2-12x+()=(x-6)22、x2-4x+()=(x-)23、x2+8x+()=(x+)2例2:若x2+2(a+4)x+25是完全平方式,求a的值。例3:把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(m+n)2-6(m+n)+9.练习:把下列各式分解因式:(1)x2-12xy+36y2(2)16a4+24a2b2+9b4(3)-2xy-x2-y2(4)4-12(x-y)+9(x-y)2(5)16a(a-2b)2-4a(6)4x4-64五、能力挑战:1.、计算:7652×17-2352×172.、2+能被整除吗?总结:这节课我们学习了用完全平方公式分解因式.这样的多项式有两个特点:(1)规定多项式有三项;(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负。注意:若一种多项式有公因式时,首先提取公因式,再看能否套公式。课后练习:1.下列各式中,能用平方差公式分解因式的是()A.B. C. D.2.下列分解因式对的的是()A.B.C.D.3.把代数式分解因式,成果对的的是()A. B. C. D.、4.是下列哪一种多项式因式分解的成果()A. B.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论