版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市澧斓实验完全中学2022-2023学年高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数①;②;③;④.其中对于定义域内的任意一个自变量都存在唯一个自变量=3成立的函数是(
).
A.③
B.②③
C.①②④
D.④参考答案:A②④是周期函数不唯一,排除;①式当=1时,不存在使得成立,排除;答案:A2.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(
)A.[-2,+∞)
B.(-∞-2)C.[-2,2]
D.[0,+∞)参考答案:A略3.双曲线的离心率为2,有一个焦点与抛物线的焦点重合,则n的值为A、1
B、4
C、8
D、12参考答案:D4.已知是双曲线渐近线上一点,E、F是左、右两焦点,若,则双曲线方程为(
)A.
B.
C.
D.参考答案:C略5.当为任意实数时,直线恒过定点P,则过点P的抛物线的标准方程是(
)A.或 B.或 C.或 D.或参考答案:C6.设u,v∈R,且|u|≤,v>0,则(u﹣v)2+()2的最小值为()A.4 B.2 C.8 D.参考答案:C【考点】简单线性规划的应用.【分析】设P(u,),Q(v,),则(u﹣v)2+()2的看成是P,Q两点的距离的平方,P点在圆x2+y2=2上,Q点在双曲线y=,如图,由图象得出P,Q两点的最小距离即可.【解答】解:设P(u,),Q(v,),则(u﹣v)2+()2的看成是P,Q两点的距离的平方,P点在圆x2+y2=2上,Q点在双曲线y=,如图,由图象得出P,Q两点的最小距离为AB=2则(u﹣v)2+()2的最小值为8,故选C.7.如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F这六个字母之一,现放置成如图的三种不同的位置,则字母A,B,C对面的字母分别为
(▲)A.D,E,F
B.F,D,E C.E,F,D
D.E,D,F参考答案:D8.设,,则与的大小关系为(
)A.
B.
C.
D.与的取值有关参考答案:D略9.用“辗转相除法”或“更项减损术”求得459和357的最大公约数是(
)A.3
B.9
C.17
D.51参考答案:D略10.已知集合,B={y|y=2x+1,x∈R},则?R(A∩B)=()A.(﹣∞,1] B.(﹣∞,1) C.(0,1] D.[0,1]参考答案:A考点:交、并、补集的混合运算.专题:集合.分析:求出A中不等式的解集确定出A,求出B中y的范围确定出B,求出A与B的解集,进而确定交集的补角即可.解答:解:由A中不等式变形得:x(x﹣1)≥0,且x﹣1≠0,解得:x≤0或x>1,即A=(﹣∞,0]∪(1,+∞),由B中y=2x+1>1,即B=(1,+∞),∴A∩B=(1,+∞),则?R(A∩B)=(﹣∞,1],故选:A.点评:此题考查了交、并、补角的混合运算,熟练掌握运算法则是解本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.已知数列{an}为,.若数列{an}为等差数列,则________.参考答案:试题分析:,两边同乘以x,则有,两边求导,左边=,右边=,即(*),对(*)式两边再求导,得取x=1,则有∴考点:数列的求和12.P为椭圆上一点,F1、F2为左右焦点,若∠F1PF2=60°,则△F1PF2的面积为.参考答案:【考点】椭圆的简单性质.【分析】先利用椭圆定义求出|PF1|+|PF2|和|F1F2|的值,因为知道焦点三角形的顶角,利用余弦定理求出|PF1||PF2|的值,再代入三角形的面积公式即可.【解答】解:由椭圆方程可知,a=5,b=3,∴c=4∵P点在椭圆上,F1、F2为椭圆的左右焦点,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8在△PF1F2中,cos∠F1PF2=====cos60°=∴72﹣4|PF1||PF2|=2|PF1||PF2|,∴|PF1||PF2|=12又∵在△F1PF2中,=|PF1||PF2|sin∠F1PF2∴=×12sin60°=3故答案为313.与大小关系为______.参考答案:>【分析】将要比较大小的两数平方即可比较大小.【详解】要比较与的大小,只需比较与的大小,只需比较与的大小,只需比较与的大小,只需比较与的大小,∵,∴故答案为:.【点睛】本题主要考查了数的比较大小,属于基础题.14.若在R上可导,,则____________.参考答案:-1815.过点M(1,2)的抛物线的标准方程为.参考答案:y2=4x或x2=y.【考点】抛物线的标准方程.【分析】先根据点的位置确定抛物线焦点的位置,然后分焦点在x轴的正半轴时、焦点在y轴的正半轴时两种情况进行求解.【解答】解:点M(1,2)是第一象限的点当抛物线的焦点在x轴的正半轴时,设抛物线的方程为y2=2px(p>0)∴4=2p,p=2,即抛物线的方程是y2=4x;当抛物线的焦点在y轴的正半轴时,设抛物线的方程为x2=2py(p>0)∴1=4p,p=,即抛物线的方程是x2=y.故答案为:y2=4x或x2=y.16.椭圆+=1(a>b>0)与圆x2+y2=(+c)2(c为椭圆半焦距)有四个不同交点,则离心率的取值范围是.参考答案:【考点】圆与圆锥曲线的综合;椭圆的简单性质.【分析】由圆的方程求得圆的半径,要使椭圆与圆有四个不同交点,则圆的半径大于椭圆短半轴小于椭圆长半轴长,由此得到不等式求得椭圆离心率的范围.【解答】解:由圆x2+y2=(+c)2是以原点为圆心,以为半径的圆,∴要使椭圆+=1(a>b>0)与圆x2+y2=(+c)2有四个不同交点,则,由,得b<2c,即a2﹣c2<4c2,即;联立,解得或e>1(舍).∴椭圆离心率的取值范围是.故答案为:.17.在的展开式中,含项的系数是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在某海滨城市O附近的海面上正形成台风.据气象部门检测,目前台风中心位于城市O的南偏东15°方向200km的海面P处,并以10km/h的速度向北偏西75°方向移动.如果台风侵袭的范围为圆心区域,目前圆形区域的半径为100km,并以20km/h的速度不断增大.几小时后该城市开始受到台风侵袭(精确到0.1h)?参考答案:【考点】HT:三角形中的几何计算.【分析】根据题意可设t小时后台风中心到达A点,该城市开始受到台风侵袭,如图△PAO中,PO=200,PA=10t,AO=100+20t,∠APO=75°﹣15°=60°,利用余弦定理建立关系即可求解.【解答】解:根据题意可设t小时后台风中心到达A点,该城市开始受到台风侵袭,如图△PAO中,PO=200,PA=10t,AO=100+20t,∠APO=75°﹣15°=60°,由余弦定理得,2=100t2+40000﹣2×10t×200×cos60°,化简得t2+20t﹣100=0,解得.答:大约4.1小时后该城市开始受到台风的侵袭.19.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列,并求李明在一年内领到驾照的概率.
参考答案:.解:的取值分别为1,2,3,4. ,表明李明第一次参加驾照考试就通过了,故P()=0.6. ,表明李明在第一次考试未通过,第二次通过了,故ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故ξ=4,表明李明第一、二、三次考试都未通过,故∴李明实际参加考试次数ξ的分布列为ξ1234P0.60.280.0960.024.李明在一年内领到驾照的概率为
1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976.
略20.2014年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:上的最大值.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)对f(x)进行求导,f′(x)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b的方程求得a,b的值.(2)研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值.【解答】解:(1)∵函数f(x)=alnx﹣bx2(x>0),∴f′(x)=﹣2bx,∵函数f(x)在x=1处与直线y=﹣相切,∴,解得;(2)f(x)=lnx﹣x2,f′(x)=,当≤x≤e时,令f'(x)>0得:≤x<1,令f'(x)<0,得1<x≤e,∴f(x)在[,1],上单调递增,在上单调递减,∴f(x)max=f(1)=﹣.21.将两颗骰子先后各抛一次,a,b表示抛甲、乙两颗骰子所得的点数.(Ⅰ)若点(a,b)落在不等式组表示的平面区域内的事件记为A,求事件A的概率;(Ⅱ)若点(a,b)落在直线x+y=m上,且使此事件的概率最大,求m的值.参考答案:(Ⅰ)x+y=4上有3个点,x+y=3上有2个点,x+y=2上有1个点,事件总数为36,故事件A的概率为=.(Ⅱ)当点P(a,b)落在直线x+y=m上,所以a+b=m,当a+b=2、3、4、5、6、7、8、9、10、11、12时,点P(a,b)的个数分别为1、2、3、4、5、6、5、4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 22500-2024动植物油脂紫外吸光度的测定
- GB/T 44771-2024压水堆核燃料组件制造工艺和产品合格性鉴定要求
- 2024年度传单派发与宣传活动合同
- 2024年度电影发行与放映权转让合同
- 2024年度汽车租赁公司汽车停车位租赁合同协议书3篇
- 六年级科学上册 全一册教案 (新版)教科版
- 2024年度股权转让合同股权结构变更
- 2024年度租赁服务合同租赁物、租赁期限及租金支付协议
- 《统计热力学基础》课件
- 2024年度医疗设备代售合同
- db11 7912011 文物建筑消防设施设置规范
- 《unit 2 you shouldnt be late.》课件小学英语外研社版一年级起点五年级上册 (2014年6月第1版)
- 一年级数学口算凑十法
- 破产流程图最新版本
- 病例报告表(样板)
- 《长方形和正方形的认识》(课件) 数学三年级上册
- 机井、管道评定表格
- 医健卫统一资源管理平台解决方案.docx
- 养殖场投资成本分析表格
- 灭火器检查记录表模板
- 在全县创建义务教育优质均衡改革发展示范区动员大会上的讲话
评论
0/150
提交评论