




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省荣成市第十四中学九年级数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列不是一元二次方程的是()A. B. C. D.2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元3.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.5.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.6.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于 B.等于 C.大于 D.无法确定7.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-88.如果抛物线开口向下,那么的取值范围为()A. B. C. D.9.已知是一元二次方程的一个根,则等于()A. B.1 C. D.210.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b11.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.2412.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.正六边形的边长为6,则该正六边形的面积是______________.14.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为_____.15.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.16.已知二次函数的图像开口向上,则的值为________.17.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.18.已知:,则的值是_______.三、解答题(共78分)19.(8分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).20.(8分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且的面积为5,求点P的坐标.21.(8分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?22.(10分)如图,在A港口的正东方向有一港口B.某巡逻艇从A港口沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶2小时到达港口B.求A,B两港之间的距离(结果保留根号).23.(10分)如图,的直径,点为上一点,连接、.(1)作的角平分线,交于点;(2)在(1)的条件下,连接.求的长.24.(10分)如图,在平面直角坐标系中,己知点,点在轴上,并且,动点在过三点的拋物线上.(1)求抛物线的解析式.(2)作垂直轴的直线,在第一象限交直线于点,交抛物线于点,求当线段的长有最大值时的坐标.并求出最大值是多少.(3)在轴上是否存在点,使得△是等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.25.(12分)如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OACD,求阴影部分的面积;(2)求证:DEDM.26.(1)用配方法解方程:x2﹣4x+2=0;(2)如图,在平面直角坐标系中,△ABC的顶点均在格点上,将△ABC绕原点O逆时针方向旋转90°得到△A1B1C1.请作出△A1B1C1,写出各顶点的坐标,并计算△A1B1C1的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)是整式方程;(2)含有一个未知数;(3)未知数的最高次数是2;(4)二次项系数不为1.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【题目详解】解:、正确,符合一元二次方程的定义;、正确,符合一元二次方程的定义;、错误,整理后不含未知数,不是方程;、正确,符合一元二次方程的定义.故选:C.【题目点拨】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2、C【解题分析】试题分析:“+”表示收入,“—”表示支出,则—80元表示支出80元.考点:相反意义的量3、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【题目详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【题目点拨】本题考查科学计算器的使用方法,属基础题.4、D【解题分析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.5、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【题目详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【题目点拨】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.6、B【分析】利用概率的意义直接得出答案.【题目详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:,故选:.【题目点拨】此题主要考查了概率的意义,正确把握概率的定义是解题关键.7、C【分析】先将该方程化为一般形式,即可得出结论.【题目详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8故选C.【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.8、D【分析】由抛物线的开口向下可得不等式,解不等式即可得出结论.【题目详解】解:∵抛物线开口向下,∴,∴.故选D.【题目点拨】本题考查二次函数图象与系数的关系,解题的关键是牢记“时,抛物线向上开口;当时,抛物线向下开口.”9、D【分析】直接把x=1代入方程得到关于m的方程,然后解关于m的方程即可.【题目详解】解:把x=1代入得m-1-1+1=0,
解得m=1.
故选:D.【题目点拨】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10、D【分析】对于反比例函数(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内.由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【题目详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A对应的x值小于点B对应的x值,∴点A对应的y值大于点B对应的y值,即a>b故选D【题目点拨】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.11、C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【题目详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【题目点拨】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.12、B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【题目详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【题目点拨】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.二、填空题(每题4分,共24分)13、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【题目详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【题目点拨】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.14、1【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解.【题目详解】解:∵点A,B的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,∴抛物线的对称轴为:直线,∵点,∴点D的坐标为,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=1;故答案为1.【题目点拨】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.15、.【解题分析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.16、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【题目详解】∵是二次函数,
∴,即
解得:,
又∵图象的开口向上,
∴,
∴.故答案为:.【题目点拨】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.17、.【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决.【题目详解】联立得,解得,或,∴点的坐标为,点的坐标为,∴,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,,得,∴直线的函数解析式为,当时,,即点的坐标为,将代入直线中,得,∵直线与轴的夹角是,∴点到直线的距离是:,∴的面积是:,故答案为.【题目点拨】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.18、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【题目详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【题目点拨】此题主要考查比例的性质,a、b都用k表示是解题的关键.三、解答题(共78分)19、大树的高度为(9+3)米【分析】根据矩形性质得出,再利用锐角三角函数的性质求出问题即可.【题目详解】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,设BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大树的高度为(9+3)米.【题目点拨】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.20、(1)(2)P的坐标为或【分析】(1)利用点A在上求a,进而代入反比例函数求k即可;(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.【题目详解】(1)把点代入,得,∴把代入反比例函数,∴;∴反比例函数的表达式为;(2)∵一次函数的图象与x轴交于点C,∴,设,∴,∴,∴或,∴P的坐标为或.【题目点拨】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.21、(1)y=﹣x+150(0<x≤90);(2)70【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可.【题目详解】(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150(0<x≤90);(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).答:该批发商若想获得4000元的利润,应将售价定为70元.【题目点拨】本题考查了一元二次方程的应用,一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出方程.22、A,B间的距离为(20+20)海里.【分析】过点C作CD⊥AB于点D,根据题意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根据锐角三角函数即可求出A,B间的距离.【题目详解】解:如图,过点C作CD⊥AB于点D,根据题意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD•tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B间的距离为(20+20)海里.【题目点拨】本题考查了解直角三角形的应用-方向角问题,解题的关键是掌握方向角的定义.23、(1)见解析;(2)【分析】(1)以点为圆心,任意长为半径(不大于AC为佳)画弧于AC和BC交于两点,然后以这两个交点为圆心,大于这两点之间距离的一半为半径画两段弧交于一点,过点C和该交点的线就是的角平分线;(2)连接,先根据角平分线的定义得出,再根据圆周角定理得出,最后再利用勾股定理求解即可.【题目详解】解:(1)如图,为所求的角平分线;(2)连接,的直径,,.平分,..在中,.【题目点拨】本题主要考察基本作图、角平分线定义、圆周角定理、勾股定理,准确作出辅助线是关键.24、(1);(2)存在,最大值为4,此时的坐标为;(3)存在,或或或【分析】(1)先确定A(4,0),B(-1,0),再设交点式y=a(x+1)(x-4),然后把C点坐标代入求出a即可;(2)作PE⊥x轴,交AC于D,垂足为E,如图,易得直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0<x<4),则D(x,-x+4),再用x表示出PD,然后根据二次函数的性质解决问题;(3)先计算出AC=4,再分类讨论:当QA=QC时,易得Q(0,0);当CQ=CA时,利用点Q与点A关于y轴对称得到Q点坐标;当AQ=AC=4时可直接写出Q点的坐标.【题目详解】(1)∵C(0,4),∴OC=4,∵OA=OC=4OB,∴OA=4,OB=1,∴A(4,0),B(-1,0),设抛物线解析式为y=a(x+1)(x-4),把C(0,4)代入得a×1×(-4)=4,解得a=-1,∴抛物线解析式为y=-(x+1)(x-4),即y=-x2+3x+4;(2)作PE⊥x轴,交AC于D,垂足为E,如图,设直线AC的解析式为:y=kx+b,∵A(4,0),C(0,4)∴解得,∴直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0<x<4),则D(x,-x+4),∴PD=-x2+3x+4-(-x+4)=-x2+4x=-(x-2)2+4,当x=2时,PD有最大值,最大值为4,此时P点坐标为(2,6);(3)存在.∵OA=OC=4,∴AC=4,∴当QA=QC时,Q点在原点,即Q(0,0);当CQ=CA时,点Q与点A关于y轴对称,则Q(-4,0);当AQ=AC=4时,Q点的坐标(4+4,0)或(4-4,0),综上所述,Q点的坐标为(0,0)或(-4,0)或(4+4,0)或(4-4,0).【题目点拨】本题考查了二次函数的综合题:熟练掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省苏州市同里中学2024-2025学年初三年级第一次模拟考试(二)数学试题含解析
- 江苏省四校联考2025届高三第二学期月考(三)英语试题含解析
- 家具定制交易合同
- 版个人房屋建设承包协议案例
- 铝门采购合同
- 2《让家更美好》表格式公开课一等奖创新教学设计 统编版七年级上册道德与法治
- 建筑项目劳动力计划和主要设备供应计划
- 人教部编版二年级上册课文4口语交际:商量教案设计
- 经管营销多维-广东溢达-问题分析与解决培训核心片段记录-1021-22
- 八年级数学下册 第20章 数据的初步分析20.2 数据的集中趋势与离散程度 1数据的集中趋势第2课时 中位数与众数教学设计 (新版)沪科版
- 幸福家庭详细攻略
- 科学知识点(知识清单)五年级上册科学粤教版
- 设备维修规程
- 西川煤矿整合区矿山地质环境保护与土地复垦方案
- Unit 6 Lesson 1 A Medical Pioneer教学设计 高中英语北师大版(2019)必修第二册
- 英语答题卡2023年全国小学生英语能力测评(NEPTP)低年级组
- 国家开放大学《哲学基础》形考任务1-3参考答案
- 输电线路外力破坏危害及特点
- 医院工作中常见的法律风险和对策专家讲座
- (完整word版)扣字词汇124
- 升压站建筑工程施工作业指导书
评论
0/150
提交评论