2024届四川省成都市第第十八中学九年级数学第一学期期末质量检测模拟试题含解析_第1页
2024届四川省成都市第第十八中学九年级数学第一学期期末质量检测模拟试题含解析_第2页
2024届四川省成都市第第十八中学九年级数学第一学期期末质量检测模拟试题含解析_第3页
2024届四川省成都市第第十八中学九年级数学第一学期期末质量检测模拟试题含解析_第4页
2024届四川省成都市第第十八中学九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市第第十八中学九年级数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣12.某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=363.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d4.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于()A. B. C. D.5.下列计算正确的是()A. B. C. D.6.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B. C.4 D.67.若二次函数的图象如图,与x轴的一个交点为(1,0),则下列各式中不成立的是()A. B. C. D.8.若关于x的函数y=(3-a)x2-x是二次函数,则a的取值范围()A.a≠0 B.a≠3 C.a<3 D.a>39.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是()A. B. C. D.10.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似()A.①② B.② C.①③ D.①②③11.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处12.下列抛物线中,与抛物线y=-3x2+1的形状、开口方向完全相同,且顶点坐标为(-1,2)的是()A.y=-3(x+1)2+2B.y=-3(x-2)2+2C.y=-(3x+1)2+2D.y=-(3x-1)2+2二、填空题(每题4分,共24分)13.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.14.抛物线y=x2﹣4x+3的顶点坐标为_____.15.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.16.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.18.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是_______.三、解答题(共78分)19.(8分)港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.732,tan20°≈0.36,结果精确到0.1)20.(8分)如图,在平面直角坐标系中,直线与双曲线相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C.(1)求双曲线与直线AC的解析式;(2)求△ABC的面积.21.(8分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.22.(10分)综合与实践:操作与发现:如图,已知A,B两点在直线CD的同一侧,线段AE,BF均是直线CD的垂线段,且BF在AE的右边,AE=2BF,将BF沿直线CD向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线CD相交于点P,点G是AE的中点,连接BG.探索与证明:求证:(1)四边形EFBG是矩形;(2)△ABG∽△PBF.23.(10分)如图,将▱ABCD的边AB延长至点E,使BE=AB,连接DE、EC、BD、DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.24.(10分)如图1,在矩形中,为边上一点,.将沿翻折得到,的延长线交边于点,过点作交于点.(1)求证:;(2)如图2,连接分别交、于点、.若,探究与之间的数量关系.25.(12分)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象交于点,两点.(1)求一次函数的表达式及点的坐标;(2)点是第四象限内反比例函数图象上一点,过点作轴的平行线,交直线于点,连接,若,求点的坐标.26.新区一中为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查.用“"表示小说类书籍,“”表示文学类书籍,“”表示传记类书籍,“”表示艺术类书籍.根据问卷调查统计资料绘制了如下两副不完整的统计图.请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了名学生,请补全条形统计图;(2)在接受问卷调查的学生中,喜欢“”的人中有2名是女生,喜欢“”的人中有2名是女生,现分别从喜欢这两类书籍的学生中各选1名进行读书心得交流,请用画树状图或列表法求出刚好选中2名是一男一女的概率.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】由图象得,此二次函数过原点(0,0),

把点(0,0)代入函数解析式得a2-1=0,解得a=±1;

又因为此二次函数的开口向上,所以a>0;

所以a=1.

故选C.2、A【分析】设游客每月的平均增长率为x,根据该旅游景点8月份及10月份接待游客人次数,即可得出关于x的一元二次方程,此题得解.【题目详解】解:设游客每月的平均增长率为x,依题意,得:16(1+x)2=1.故选:A.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、A【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【题目详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、c:a=d:b⇒bc=ad,故错误D、b:c=a:d⇒ad=bc,故错误.故选A.【题目点拨】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.4、A【解题分析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.∴,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.5、D【分析】直接利用二次根式的加减运算法则计算得出答案.【题目详解】解:A、无法计算,故此选项错误;B、2+无法计算,故此选项错误;C、2﹣,无法计算,故此选项错误;D、﹣=,正确.故选:D.【题目点拨】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.6、A【解题分析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.

∵在直角△OCD中,∠COD=90°,OD=2,OC=6,

∴CD=,

∴PD+PA=PD+PC=CD=2.

∴PD+PA和的最小值是2.

故选A.7、B【分析】根据二次函数图象开口方向与坐标轴的交点坐标特点,利用排除法可解答.【题目详解】解:∵抛物线与x轴有两个交点,∴,故A正确,不符合题意;∵函数图象开口向下,

∴a<0,∵抛物线与y轴正半轴相交,∴c>0,∵抛物线对称轴在y轴的右侧,∴>0,∴b>0,∴abc<0,故B错误,符合题意;又∵图象与x轴的一个交点坐标是(1,0),

∴将点代入二次函数y=ax2+bx+c得a+b+c=0,故C正确,不符合题意,

∵当x=-1时,y=a-b+c,由函数图象可知,y=a-b+c<0,故D正确,不符合题意,

故选:B.【题目点拨】本题考查二次函数图象上点的坐标特征,是基础题型,也是常考题型.8、B【分析】根据二次函数的定义,二次项系数不等于0列式求解即可.【题目详解】根据二次函数的定义,二次项系数不等于0,3-a≠0,则a≠3,故选B【题目点拨】本题考查二次函数的定义,熟记概念是解题的关键.9、A【题目详解】解:列表如下:

-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q≥0的情况有4种,则P(满足方程的根)=故选:A.10、C【分析】根据相似三角形的判定方法即可一一判断;【题目详解】解:∵∠A=∠A,∠AED=∠B,

∴△AED∽△ABC,故①正确,

∵∠A=∠A,,

∴△AED∽△ABC,故③正确,

由②无法判定△ADE与△ACB相似,

故选C.【题目点拨】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.11、D【解题分析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.12、A【解题分析】由条件可设出抛物线的顶点式,再由已知可确定出其二次项系数,则可求得抛物线解析式.【题目详解】∵抛物线顶点坐标为(﹣1,1),∴可设抛物线解析式为y=a(x+1)1+1.∵与抛物线y=﹣3x1+1的形状、开口方向完全相同,∴a=﹣3,∴所求抛物线解析式为y=﹣3(x+1)1+1.故选A.【题目点拨】本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)1+k中,顶点坐标为(h,k),对称轴为x=h.二、填空题(每题4分,共24分)13、.【解题分析】直接利用概率公式求解可得.【题目详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.【题目点拨】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数÷所有可能出现的结果数.14、(2,﹣1).【解题分析】先把函数解析式配成顶点式得到y=(x-2)2-1,然后根据顶点式即可得到顶点坐标.解:y=(x-2)2-1,

所以抛物线的顶点坐标为(2,-1).

故答案为(2,-1).“点睛”本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x-h)2+k;两根式:y=a(x-x1)(x-x2).15、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【题目详解】解:连接OC,

∵CE是⊙O的切线,

∴∠OCE=90°,

∵∠E=20°,

∴∠COD=70°,

∵OC=OD,∴∠ABC=180°-55°=125°,

连接AC,过点A做AF⊥CE交CE于点F,

设OC=OD=r,

∴OE=8+r,

在Rt△OEC中,

由勾股定理可知:(8+r)2=r2+122,

∴r=5,

∵OC∥AF

∴△OCE∽△AEF,故答案为:【题目点拨】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.16、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【题目详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【题目点拨】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.17、(﹣1,1)(1,3)【分析】根据图象可知抛物线y=﹣x2+2x+k过点(3,1),从而可以求得k的值,进而得到抛物线的解析式,然后即可得到点B和点C的坐标.【题目详解】解:由图可知,抛物线y=﹣x2+2x+k过点(3,1),则1=﹣32+2×3+k,得k=3,∴y=﹣x2+2x+3=﹣(x﹣3)(x+1),当x=1时,y=1+1+3=3;当y=1时,﹣(x﹣3)(x+1)=1,∴x=3或x=﹣1,∴点B的坐标为(﹣1,1),点C的坐标为(1,3),故答案为:(﹣1,1),(1,3).【题目点拨】本题考查了二次函数图像上点的坐标特征,二次函数与坐标轴的交点问题,二次函数与x轴的交点横坐标是ax2+bx+c=1时方程的解,纵坐标是y=1.18、【题目详解】试题分析:在秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.因此在上述5人中随机抽取一张,所有抽到的人物为唐朝以后出生的概率=.故答案为.考点:概率公式三、解答题(共78分)19、斜拉索顶端A点到海平面B点的距离AB约为93.7米.【分析】在Rt△ACD和Rt△BCD中,根据锐角三角函数求出AD、BD,即可求出AB.【题目详解】如图,由题意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD•tan∠ACD=100×≈57.73(米),在Rt△BCD中,BD=CD•tan∠BCD≈100×0.36≈36(米),∴AB=AD+DB=57.73+36=93.73≈93.7(米),答:斜拉索顶端A点到海平面B点的距离AB约为93.7米.【题目点拨】本题考查了解直角三角形的应用-仰角俯角问题问题,掌握锐角三角函数的意义是解题的关键.20、(1);(2)4.【分析】(1)将点A(﹣2,a)代入直线y=-x得A坐标,再将点A代入双曲线即可得到k值,由AB关于原点对称得到B点坐标,由BC⊥x轴,垂足为C,确定出点C坐标,将A、C代入一次函数解析式即可求解;(2)由三角形面积公式即可求解.【题目详解】将点A(﹣2,a)代入直线y=-x得a=-2,所以A(-2,2),将A(-2,2)代入双曲线,得k=-4,∴,∵,,,,解得,∴;(2)【题目点拨】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.21、(1)AE=;(2)证明见解析.【分析】(1)根据题意可得:AB=AC=6,可得AO=3,根据勾股定理可求BO的值,根据S△ABO=AB×BO=BO×AE,可求AE的长度.(2)延长AE到P,使AP=BF,可证△ABF≌△APC,可得AF=PC.则GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可证△AGH≌△PHC,结论可得.【题目详解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四边形ABCD是平行四边形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如图:延长AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC【题目点拨】本题考查了平行四边形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形是解决问题的关键.22、(1)见解析;(2)见解析.【分析】(1)先通过等量代换得出GE=BF,然后由AE⊥CD,BF⊥CD得出AE∥BF,从而得到四边形EFBG是平行四边形,最后利用BF⊥CD,则可证明平行四边形EFBG是矩形;(2)先通过矩形的性质得出∠AGB=∠GBF=∠BFE=90°,然后通过等量代换得出∠ABG=∠PBF,再加上∠AGB=∠PFB=90°即可证明△ABG∽△PBF.【题目详解】(1)证明:∵AE⊥CD,BF⊥CD,∴AE∥BF,∵AE=2BF,∴BF=AE,∵点G是AE的中点,∴GE=AE,∴GE=BF,又AE∥BF,∴四边形EFBG是平行四边形,∵BF⊥CD,∴平行四边形EFBG是矩形;(2)∵四边形EFBG是矩形,∴∠AGB=∠GBF=∠BFE=90°,∵∠ABP=90°,∴∠ABP﹣∠GBP=∠GBF﹣∠GBP,即∠ABG=∠PBF,∵∠ABG=∠PBF,∠AGB=∠PFB=90°,∴△ABG∽△PBF.【题目点拨】本题主要考查矩形的判定及性质,相似三角形的判定,掌握矩形的判定及性质和相似三角形的判定方法是解题的关键.23、(1)见解析;(2)见解析【分析】(1)先运用平行四边形的知识得到AB=BE、BE=DC、BD=EC,即可证明△ABD≌△BEC;(2)由四边形BECD为平行四边形可得OD=OE,OC=OB,再结合四边形ABCD为平行四边形得到∠A=∠OCD,再结合已知条件可得OC=OD,即BC=ED;最后根据对角线相等的平行四边形是矩形证明即可.【题目详解】证明:(1)∵在平行四边形ABCD∴AD=BC,AB=CD,AB∥CD,即BE∥CD.又∵AB=BE,∴BE=DC.∴四边形BECD为平行四边形.∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS);(2)∵四边形BECD为平行四边形,∴OD=OE,OC=OB,∵四边形ABCD为平行四边形,∴∠A=∠BCD.即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC∴OC=OD.∴OC+OB=OD+OE,即BC=ED.∴四边形BECD为矩形.【题目点拨】本题主要考查了矩形的判定、平行四边形的性质和判定、平行线的性质、全等三角形的性质和判定、三角形的外角性质等知识点,灵活应用相关知识是解答本题的关键.24、(1)详见解析;(2).【分析】(1)过点作于点,根据矩形的判定可得四边形和四边形是矩形,从而得出,,,然后证出,列出比例式,再利用等量代换即可得出结论;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论