高中数学概率复习公开课课件苏教版必修31u1_第1页
高中数学概率复习公开课课件苏教版必修31u1_第2页
高中数学概率复习公开课课件苏教版必修31u1_第3页
高中数学概率复习公开课课件苏教版必修31u1_第4页
高中数学概率复习公开课课件苏教版必修31u1_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率复习高考视角下的知识梳理1、互斥事件加法公式:2、相互独立事件乘法公式:3、二项分布4、分布列例1一个袋中装有10个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为求随机变量的数学期望袋中任意摸出2个球,至少得到1个白球的概率是例2

在姜山中学组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率为0.25,在B处的命中率为,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为的数学期望E(1)求的值(2)求随机变量023450.03(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

例3

林丹与朴成焕二人进行羽毛球决赛,规定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,林丹获胜的概率为0.6,朴成焕获胜的概率为0.4,假设各局比赛结果相互独立,已知前2局中,两人各胜1局。(I)求林丹获得这次比赛胜利的概率;(II)设表示从第3局开始到比赛结束所进行的局数,求分布列及数学期望。如图,一个小球从M处投入,通过管道自上而下落到A或B或C。已知小球从每个叉口落入左右两个管道的可能性是相等的。某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖。(Ⅰ)已知获得1,2,3等奖的折扣率分别为50%,70%,90%。记随机变量ξ

为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ

的分布列及期望Eξ

;(Ⅱ)若有3人次(投入1球为1人次)参加促销活动,记随机变量

η为获得1等奖或2等奖的人次,求P(

η

=2).

课堂小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论