2024届山东省诸城市数学九上期末统考试题含解析_第1页
2024届山东省诸城市数学九上期末统考试题含解析_第2页
2024届山东省诸城市数学九上期末统考试题含解析_第3页
2024届山东省诸城市数学九上期末统考试题含解析_第4页
2024届山东省诸城市数学九上期末统考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省诸城市数学九上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个 B.2个 C.3个 D.4个2.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球3.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.

B.

C.

或D.4.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大5.已知反比例函数,下列结论中不正确的是()A.图象经过点(-1,-1) B.图象在第一、三象限C.当时, D.当时,y随着x的增大而增大6.如图,是的直径,是的弦,已知,则的度数为()A. B. C. D.7.在中,,另一个和它相似的三角形最长的边是,则这个三角形最短的边是()A. B. C. D.8.如图,⊙中,,则等于()A. B. C. D.9.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为()A.6 B.7 C.8 D.910.已知点,,都在反比例函数的图像上,则()A. B. C. D.11.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个12.如图,将△ABC绕点C顺时针旋转50°得△DEC,若AC⊥DE,则∠BAC等于()A.30° B.40° C.50° D.60°二、填空题(每题4分,共24分)13.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.14.如图,中,,,,__________.15.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆直径径为6cm,那么大圆半径为_____cm.16.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab的值是____________.17.如图,在中,,为边上一点,已知,,,则____________.18.如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.三、解答题(共78分)19.(8分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.20.(8分)如图,海中有一个小岛,它的周围海里内有暗礁,今有货船由西向东航行,开始在岛南偏西的处,往东航行海里后到达该岛南偏西的处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.21.(8分)已知函数y=mx1﹣(1m+1)x+1(m≠0),请判断下列结论是否正确,并说明理由.(1)当m<0时,函数y=mx1﹣(1m+1)x+1在x>1时,y随x的增大而减小;(1)当m>0时,函数y=mx1﹣(1m+1)x+1图象截x轴上的线段长度小于1.22.(10分)如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.问题发现:当时,_____;当时,_____.拓展探究:试判断:当时,的大小有无变化?请仅就图2的情况给出证明.问题解决:当旋转至A、D、E三点共线时,直接写出线段BD的长.23.(10分)如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.(1)证明:DP是⊙O的切线.(2)若CD=3,求BD的长.24.(10分)如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点,另一边交的延长线于点.(1)求证:;(2)如图2,将三角板绕点旋转,当时,连接交于点求证:;(3)如图3,将“正方形”改为“矩形”,且将三角板的直角顶点放于对角线(不与端点重合)上,使三角板的一边经过点,另一边交于点,若,求的值.25.(12分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=40°,∠B=60°,当∠BCD=40°时,证明:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD是以AC为底边的等腰三角形,求∠ACB的度数.(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,△ACD是以CD为底边的等腰三角形,求CD的长.26.如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)

参考答案一、选择题(每题4分,共48分)1、B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【题目详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【题目点拨】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.2、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【题目详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【题目点拨】本题考查频率估算概率,关键在于通过图象得出有利信息.3、B【解题分析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:故选B.点睛:二次函数二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.4、B【解题分析】先根据根的判别式得出方程有两个不相等的实数根,设方程x2+bx-2=0的两个根为c、d,根据根与系数的关系得出c+d=-b,cd=-2,再判断即可.【题目详解】x2+bx−2=0,△=b2−4×1×(−2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx−2=0的两个根为c、d,则c+d=−b,cd=−2,由cd=−2得出方程的两个根一正一负,由c+d=−b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故答案选:B.【题目点拨】本题考查的知识点是根的判别式及根与系数的关系,解题的关键是熟练的掌握根的判别式及根与系数的关系.5、D【解题分析】根据反比例函数的性质,利用排除法求解.【题目详解】解:A、x=-1,y==-1,∴图象经过点(-1,-1),正确;B、∵k=1>0,∴图象在第一、三象限,正确;C、∵k=1>0,∴图象在第一象限内y随x的增大而减小,∴当x>1时,0<y<1,正确;D、应为当x<0时,y随着x的增大而减小,错误.故选:D.【题目点拨】本题考查了反比例函数的性质,当k>0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小.6、C【分析】根据圆周角定理即可解决问题.【题目详解】∵,∴.故选:C.【题目点拨】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7、B【分析】设另一个三角形最短的一边是x,根据相似三角形对应边成比例即可得出结论.【题目详解】设另一个三角形最短的一边是x,∵△ABC中,AB=12,BC=1,CA=24,另一个和它相似的三角形最长的一边是36,∴,解得x=1.故选:C.【题目点拨】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.8、C【分析】直接根据圆周角定理解答即可.【题目详解】解:∵∠ABC与∠AOC是一条弧所对的圆周角与圆心角,∠ABC=45°,

∴∠AOC=2∠ABC=2×45°=90°.

故选:C.【题目点拨】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、B【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【题目详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是,故选:B.【题目点拨】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.10、D【解题分析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【题目详解】∵k0,∴反比例函数在二、四象限,y值随着x的增大而减小,又∵,在反比例函数的图像上,,2∴0,点在第二象限,故,∴,故选D.【题目点拨】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.11、B【解题分析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点:1.轴对称图形;2.中心对称图形.12、B【分析】根据旋转的性质可求得∠ACD,根据互余关系可求∠D,根据对应角相等即可得∠BAC的大小.【题目详解】解:依题意得旋转角∠ACD=50°,由于AC⊥DE,由互余关系可得∠D=90°-50°=40°,由旋转后对应角相等,得∠BAC=∠D=40°,故B选项正确.【题目点拨】本题考查了图形的旋转变化,要分清是顺时针还是逆时针旋转,旋转了多少度,难度不大,但容易出错,细心点即可.二、填空题(每题4分,共24分)13、1.【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【题目详解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案为:1.【题目点拨】此题主要考查了二次根式的化简和性质,正确把握绝对值的性质是解答此题的关键.14、18【分析】根据勾股定理和三角形面积公式得,再通过完全平方公式可得.【题目详解】因为中,,,,所以所以所以=64+36=100所以AB+BC=10所以AC+AB+BC=8+10=18故答案为:18【题目点拨】考核知识点:勾股定理.灵活根据完全平方公式进行变形是关键.15、1【分析】连接OA,由切线的性质可知OP⊥AB,由垂径定理可知AP=PB,在Rt△OAP中,利用勾股定理可求得OA的长.【题目详解】如图,连接OP,AO,∵AB是小圆的切线,∴OP⊥AB,∵OP过圆心,∴AP=BP=AB=4cm,∵小圆直径为6cm,∴OP=3cm,在Rt△AOP中,由勾股定理可得OA==1(cm),即大圆的半径为1cm,故答案为:1.【题目点拨】此题考查垂径定理,勾股定理,在圆中垂径定理通常与勾股定理一起运用求半径、弦、弦心距中的一个量的值.16、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【题目详解】∵x=1是一元二次方程x2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.17、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【题目详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【题目点拨】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.18、2【解题分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2.【题目详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2,故答案为:2.【题目点拨】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.三、解答题(共78分)19、(1)1401;(2)w外=x2+(130-a)x;(3)a=2;(4)见解析【分析】(1)将x=1000代入函数关系式求得y,根据等量关系“利润=销售额-成本-广告费”求得w内;

(2)根据等量关系“利润=销售额-成本-广告费”,“利润=销售额-成本-附加费”列出两个函数关系式;

(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值;

(4)根据x=3000,即可求得w内的值和w外关于a的一次函数式,即可解题.【题目详解】解:(1))∵销售价格y(元/件)与月销量x(件)的函数关系式为y=x+130,∴当x=1000时,y=-10+130=140,w内=x(y-20)-62300=1000×120-62300=1,

故答案为:140,1.(2)w内=x(y-20)-62300=x2+12x,w外=x2+(130)x.(3)当x==6300时,w内最大;分由题意得,解得a1=2,a2=270(不合题意,舍去).所以a=2.(4)当x=3000时,w内=337300,w外=.若w内<w外,则a<32.3;若w内=w外,则a=32.3;若w内>w外,则a>32.3.所以,当10≤a<32.3时,选择在国外销售;当a=32.3时,在国外和国内销售都一样;当32.3<a≤40时,选择在国内销售.20、无触礁的危险,理由见解析【分析】作高AD,由题意可得∠ACD=60°,∠ABC=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt△ADC中,利用直角三角形的边角关系,求出AD与15海里比较即可.【题目详解】解:过点A作ADBC,垂足为D∵∠ABC=∠ACD=∴∠BAC==∠ABC∴BC=AC=20∴=AD=20=10所以货船在航行途中无触礁的危险.【题目点拨】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,正确作出高线是解题的关键.21、(1)详见解析;(1)详见解析.【分析】(1)先确定抛物线的对称轴为直线x=1+,利用二次函数的性质得当m>1+时,y随x的增大而减小,从而可对(1)的结论进行判断;(1)设抛物线与x轴的两交的横坐标为x1、x1,则根据根与系数的关系得到x1+x1=,x1x1=,利用完全平方公式得到|x1﹣x1|===|1﹣|,然后m取时可对(1)的结论进行判断.【题目详解】解:(1)的结论正确.理由如下:抛物线的对称轴为直线,∵m<0,∴当m>1+时,y随x的增大而减小,而1>1+,∴当m<0时,函数y=mx1﹣(1m+1)x+1在x>1时,y随x的增大而减小;(1)的结论错误.理由如下:设抛物线与x轴的两交的横坐标为x1、x1,则x1+x1=,x1x1=,|x1﹣x1|=====|1﹣|,而m>0,若m取时,|x1﹣x1|=3,∴当m>0时,函数y=mx1﹣(1m+1)x+1图象截x轴上的线段长度小于1不正确.【题目点拨】本题考查了二次函数的增减性问题,与x轴的交点问题,熟练掌握二次函数的性质是解题的关键.22、(1)①;②;(2)的大小没有变化;(3)BD的长为:.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情况分析,A、D、E三点所在直线与BC不相交和与BC相交,然后利用勾股定理分别求解即可求得答案.【题目详解】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴AE=AC=5,BD=BC=4,∴.②如图1,当α=180°时,可得AB∥DE,∵,∴.故答案为:①;②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,连接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE=AB=3,∴AE=AD+DE=,由(2),可得:,∴BD=;②如图4,连接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE=AB=3,∴AE=AD-DE=,由(2),可得:,∴BD=AE=.综上所述,BD的长为:.【题目点拨】此题属于旋转的综合题.考查了、旋转的性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.23、(1)见解析;(2)【分析】(1)连接OC,根据等腰三角形的性质,三角形的内角和与外角的性质,证得∠OCD=90°,即可证得DP是⊙O的切线;(2)根据等腰直角三角形的性质得OB=OC=CD=3,而∠OCD=90º,最后利用勾股定理进行计算即可.【题目详解】(1)证明:连接OC,

∵OA=OC,

∴∠CAD=∠ACO,

∴∠COD=2∠CAD=45°,

∵∠D=2∠CAD=45º,∴∠OCD=180°-45°-45°=90°,

∴OC⊥CD,∴DP是⊙O的切线;(2)由(1)可知∠CDO=∠COD=45º∴OB=OC=CD=3∵∠OCD=90º∴,∴BD=OD-OB=【题目点拨】本题考查了切线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握切线的性质是解题的关键.24、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据旋转全等模型利用正方形的性质,由可证明,从而可得结论;(2)根据正方形性质可知,结合已知可得;再由(1)可知是等腰直角三角形可得,从而证明,由相似三角形性质即可得出结论;(3)首先过点作,垂足为,交AD于M点,由有两角对应相等的三角形相似,证得,根据相似三角形的对应边成比例,再由平行可得,由此即可求得答案.【题目详解】(1)证明:∵在正方形ABCD中,∴,又∵,,在和中,,∴(ASA),;(2)证明:∵四边形ABCD是正方形,∴,又∵,∴,由(1)可知,∴,∴,由(1)可知是等腰直角三角形,∴,∴,∴,∴,由(1)可知,∴.(3)解:如图,过点作,垂足为,交AD于M点,∵四边形ABCD为矩形,∴,,∴四边形ABNM是矩形,∴,,∴又∵,∴,∴,∴,,又∵,∴,又∵,∴,,∵.【题目点拨】本题主要考查了相似三角形性质和判定;涉及了正方形,矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意旋转全等模型和一线三垂直模型的应用.25、(1)证明见解析;(2)∠ACB=96°;(3)CD的长为-1.【分析】(1)根据三角形内角和定理可求出∠ACB=80°,进而可得∠ACD=40°,即可证明AD=CD,由∠BCD=∠A=40°,∠B为公共角可证明三角形BCD∽△BAC,即可得结论;(2)根据等腰三角形的性质可得∠ACD=∠A=48°,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论