科傻gps平差软件说明书_第1页
科傻gps平差软件说明书_第2页
科傻gps平差软件说明书_第3页
科傻gps平差软件说明书_第4页
科傻gps平差软件说明书_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

科傻系统(COSA)系列软件GPS工程测量网通用平差软件包〔CosaGPSV5.1〕使用说明书2007年11月

COSAGPS所有Tel:Email:.目录目录11•简介3功能全面31.2整体性好41.3解算容量大,运算速度快41.4操作简明,使用方便42.“文件〞下拉菜单6工程与文件6“文件〞菜单项92.2.1新建102.2.2翻开102.2.3关闭102.2.4保存102.2.5另存为102.2.6新建工程10翻开工程17打印18打印预览18打印设置18退出18“GPS数据处理"下拉菜单18数据19三维坐标19二维坐标21一维高程点21输入地面边长21输入地面方位223.2基线数据22GPS三维向量网平差〔无约東平差或约東平差〕24二维网联合/约束平差25联合/约束平差25输出用户自定义任意两点相对精度26椭球面上三维平差26工程网(一点一方向)平差27GPS高程拟合28GPS三维秩亏自由网平差29稳定性分析30设置31“查看〞下拉菜单32“工具〞下拉菜单32闭合差计算34重复基线差34网图显绘35贯穿误差影响值计算35GPS网设计365.6输岀AutoCAD格式的GPS网图38“坐标转换〞下拉菜单38XYZ-〉BLH39BLH->XYZ40BL->XY41XY->BL41XY1->XY242XYZ1->XYZ244高程面坐标变换467.“帮助〞下拉菜单47附录1.功能菜单框图48附录2.算例及说明44附录3.基线解文件格式说明45附录4.方向及经纬度的角度格式说明54附录5.简要操作步骤541•简介基于全球卫星定位系统(GPS)的现代测量理论和技术改变了传统的测量模式,使工程测量行业发生了革命性变化,测量外业工作自动化程度大大提高,测量内业软件的作用更加重要。为了满足工程测量单位对GPS数据处理的要求,在分析研究GPS数据处理理论的根底上,我们研制了自主的CosaGPS软件系统,该软件具有如下特点:功能全面软件具有在世界空间直角坐标系(WGS-84)进展三维向量网平差〔无约束平差和约束平差〕、在椭球面上进展卫星网与地面网三维平差、在高斯平面坐标系进展二维联合平差、针对工程独立网的固定一点一方向的平差、高程拟合等功能,并带有常用的工程测量计算工具,可以实现各种坐标转换。整体性好全部软件集成在统一的环境下,编辑器、文档、图形、数据处理模块均自主编写;采用多文档,可同时处理多项任务;采用工程管理模式,可方便进展各类数据的操作。解算容量大,运算速度快软件设计采用节省内存的快速算法,在现有的大局部微机上〔Winows98,Windows2000,WindowsXP〕,可整体解算数干个控制点的GPS控制网,内存不够时那么采用外存作缓冲,因而还可解算更大规模的GPS工程网。操作简明,使用方便在WIN95/98/2000/XP系统环境下运行,可采用表格方式或文本方式进展数据录入,大局部操作采用“傻瓜“式选项。对于输入量较少的数据和参数,采用表格方式输入;对于大批量的数据那么采用文件方式输入。表格方式输入时,屏幕上显示格式如图1.1。图1.1输入数据表格表格中各列的宽度可以改变,将鼠标移到表格中各列标题的结合处,按下左键拖动,调节到适宜的宽度即可。表格中的行数是不受限制的,输满后将向上滚动,底下弹岀新的空白行。表格式输人的数据被保存到文本文件〔文件名参见2.1],用户也可直接对相应的文本文件〔例如:工程名.GPS3dKnownXYZ〕进展修改,重新进人表格后,表格中的数据将自动进展更新。表格中各列的宽度可以改变,将鼠标移到表格中各列标题的结合处,按下左键拖动,调节到适宜的宽度即可。表格中的行数是不受限制的,输满后将向上滚动,底下弹岀新的空白行。表格式输人的数据被保存到文本文件〔文件名参见2.1],用户也可直接对相应的文本文件〔例如:工程名.GPS3dKnownXYZ]进展修改,重新进人表格后,表格中的数据将自动进展更新。文件方式输人数据时,可以使用本系统的编辑器,也可以使用其它的文本编辑器〔比方记事本、书写器、Word等,应选择纯文本方式〕,其操作根本一样,可以使用快捷键〔复制:Ctrl+C,粘贴:Ctrl+V〕,或者点击鼠标右键后,根据弹岀的快捷菜单进展操作,也可以利用屏幕顶部的“编辑"菜单进展文本处理。对文件编辑完毕后,用屏幕烦部的“文件"-〉“保存"菜单进展同名保存〔与鼠标点击蛊一样〕或用“另存为"保存为另一文件名。系统主菜单参见图1.2。图1.2系统主菜单2.“文件"下拉菜单2.1工程与文件工程是指某项确定的任务,它是所有与之相关文档的集合,其中单个的文档称为文件,相关的文件通过工程而联系在一起。该系统是按工程进展管理和处理的,大局部操作是对所选定的工程进展的,这样做的优点是方便用户使用,便于存档和调阅,同时,按工程进展管理也是大局部优秀软件所采用的方法,为软件新建® Ctrl+N打开⑪… Ctrl+O关闭©f呆存⑤ Ctrl+S另存対竝…新建工程打开工程打E卩迥... Ctrl+F打印预览电)打印设置迅〕…±S.GPS3dUYHEFT±^.GFSldReSult±[^.GF53dBLHResult4上海一GF亞dE注ult退出区)图2.1文件菜单使用人员所熟悉。观测数据文件和平差结果文件等都是与工程有关的文档,一个工程会涉及到许多的文档,根据一定的命名规那么,系统会调用相应的文档进展处理。“文件"下拉菜单参见图2.1。工程名一般采用地区或测区名称,这样易于记忆,其构成形

式为表格方式输入的数据文件,也可以用文本编辑器进展编辑固定一点一方向的工程网有关文件工程名.OneFix 输人的数据文件,与对话框对应工程名.GPS2dResult1 GPS表格方式输入的数据文件,也可以用文本编辑器进展编辑固定一点一方向的工程网有关文件工程名.OneFix 输人的数据文件,与对话框对应工程名.GPS2dResult1 GPS二维平差结果系统把以prj为后缀的文件看作是工程文件。另外,还有许多的数据文件和结果文件,其命名规那么及含义为:与工程有关的GPS文件:*工程名.GPSIdKnownH 高程文件*工程名*工程名.GPS2dKnownXY*工程名.GPS3dKnownXYZ*工程名.GPS2dAzimuth*工程名.GPS2dDistance工程名.GPS3dVector工程名.GPS2dVector工程名.GPS3dBLHVector工程名.GPS1dResult工程名.GPS2dResult工程名.GPS3dResult工程名.GPS3dBLHResult工程名.GPS3dBLH工程名.GPS3dXYH三维坐标文件地面方位角地面边长GPS三维基线向量GPS二维坐标差向量GPS三维大地坐标差向量GPS高程拟合结果GPS二维联合平差结果GPS三维向量网平差结果GPS三维网椭球面上联合平差结果GPS三维大地坐标文件工程名.GPS3dXYHEFTGPS平面坐标、大地高、误差椭圆元素文件工程名.GPS2dXYEFT椭圆元素文件GPS工程名.GPS3dXYHEFTGPS平面坐标、大地高、误差椭圆元素文件工程名.GPS2dXYEFT椭圆元素文件GPS二维联合平差高斯平面坐标及误差工程名.dxfAutoCAD的DXF格式的网图文件工程名.GPS3dResult1闭合差计算文件工程名.GPS3dLoopGPS三维向量网平差结果工程名.GPS3dMisclosure贯穿误差影响值计算输入输出文件(参见5.4)工程名.gti工程名.gto◊转换参数文件:输入文件输出文件Parameter.1dParameter.2d高程拟合模型系数二维转换旋转角及尺度因子◊坐标转换算例文件:demo.xydemo.BLdemo.XYZdemo.BLHdemo.XYXYdemo.XYXY_Odemo.XYZXYZdemo.XYZXYZ_O◊用户自定义文件高斯平面直角坐标大地经纬度三维空间直角坐标三维大地坐标不同平面坐标系坐标转换不同平面坐标系坐标转换结果不同空间直角坐标系坐标转换不同空间直角坐标系坐标转换结果demo.GPS2dRel用户自定义需要输出相对精度的点对文件2.2“文件〞菜单项在主菜单下用鼠标单点“文件〞,弹出如图2.2所示的下拉菜单,其中各项含义是:2・2・1新建用该系统的编辑器建立新文本文件2・2・2翻开用该系统的编辑器翻开已有的文本文件2・2・3关闭关闭当前活动窗口2・2・4保存保存当前活动窗口的文件2・2・5另存为换名保存当前活动窗口的文件2・2・6新建工程数据处理是按工程进展的,必须首先建立工程。选择此项,弹岀如图2.2所示窗口。在该窗口中输人有关的工程参数,其中有:工程、控制网、接收机/基线解类型、投影面大地高、坐标加常数五个组框和中央子午线、测区平均纬度两个编辑框。工程组框在工程组框中,输人工程名,工程所在路径二项,工程名是工程的标识,路径是工程所在的文件夹或目录。对于工程所在路径也可点取按钮二I进展浏览选择,此时会岀现如图2.3的浏览文

件夹窗口,在此窗口中选择所需文件夹。在“新建工程"时,可立即进展参数设置,系统将记忆有关选项,以后可在“GPS数据处理"->“设置"项中查看和修改。

图2.3选择工程路径226.2控制网组框在控制网组框中,选定或者新增坐标系统、设定控制网等级。坐标系统是点位坐标的参考系,我国常用的测量坐标系统有:BJ54(54坐标),GDZ80(国家80坐标),WGS84坐标,城市坐标系,工程坐标系,独立坐标系。国家坐标系统参照于某个参考椭球,在同一参考椭球下,又有空间直角坐标、大地坐标、平面直角坐标。进展坐标转换需选择相应的椭球参数,椭球的几何参数可由长半轴和扁率分母确定。点压按钮 岀现如图2.4窗口。在该窗口中输人坐标系统的椭球长半轴和椭球扁率分母,然后可在右边对应的下拉框中选定所需的坐标系统,输人无误后按“确认"按钮。

图2.4定义坐标系统其中,“国家80坐标"、“WGS-84坐标"、“54坐标"是固定的,不能改变,“工程系T是用户自定义的。在控制网组框右下角的下拉框中选择要求的坐标系,如图2.5所示。等 级国标右级J坐标系统WGST4坐标I国家80坐标工程丢1独立基线条?期坐标曰匕京54坐标厂故造基釀解方差阵厂用验前单位祝中误差(1cm}图2.5选择坐标系控制网等级是按下述系列划分的:国标A级国标B级国标C级国标D级国标E级城市二等城市三等城市四等城市一级城市二级铁道B级铁道C级铁道D级铁道E级公路一级(线路)公路一级(特殊)公路二级(线路)公路二级(特殊)公路三级(线路)公路三级(特殊)公路四级(线路)自定义(仪器固定误差,比例误差)在全球定位系统〔GPS〕测量规X(GB/T18314-2001)、全球定位系统城市测量技术规程〔CJJ73-97〕、无碴轨道铁路工程测量技术暂行规定、全球定位系统公路测量规X中规定了各个等级GPS控制网的固定误差和比例误差,按照控制网的实际等级进展选择。对于特殊网,如果没有包含在上述等级中,那么可选择自定义,即采用仪器框中输入的仪器固定误差和比例误差,用户可以进展编辑和修改。接收机/基线解类型组框各个GPS接收机生产厂家提供了相应的基线解算软件,比方Trimble的TGO、Leica的SKI、Topcon(Javad)的Pinnacle、Ashtech的Solution等,不同基线解算软件求得的基线向量的输出格式是不同的,CosaGPS支持的软件格式有:Trimble(GPSurvey/TGO)Ashtech(GPPS/Solution)Leica(SKI/LGO)SokkiaRougeLipCosaGPSTopcon/Javad(Pinnacle)GamitNovatelZhonghaida〔中海达〕当采用了两种以上软件解算得到网中的基线向量时,首先查看不同软件的基线向量的方差之比是否存在系统性偏差,假设其比值为1:m1:m2,那么进展匹配处理,对第1种软件的基线输入1作为基线方差因子,生成CosaGPS的基线输入文件〔工程名.GPS3dVecto门,将其名称改为V1.GPS3dVector,对第2种软件的基线输人m1作为基线方差因子,生成CosaGPS的基线输人文件〔工程名.GPS3dVecto门,将其名称改为V2.GPS3dVector,对第3种软件的基线输人m2作为基线方差因子,生成CosaGPS的基线输人文件〔工程名.GPS3dVector,将其名称改为V3.GPS3dVector,最后将V1、V2、V3三个文件合并在一起并命名为工程名.GPS3dVector,再进展后续平差处理。接收机框中的固定误差(mm)、比例误差(ppm)、改造基线方差阵是根据GPS接收机的精度指标对基线的方差阵进展修正。一般情况下,不应在检查框中打勾〔即不启用修正功能〕;只有当验后单位权中误差很大时〔说明基线向量的方差阵不准确〕,将该项选中,软件将只利用基线解方差阵的相关性,同时利用仪器的标称精度〔接收机的固定误差、比例误差〕重新构造方差阵进展网平差。用验前单位权中误差检查框决定平差结果的精度指标是基于验前值还是验后值,当网中多余观测量较少时,例如当闭合环的个数少于4时,验后单位权中误差是不够准确的,可以采用验前单位权中误差(1cm)。独立基线条数:省缺值为-1,即认为选定的基线全部为独立基线;假设选择了全部基线进展平差〔含有同步基线〕,那么平差后的精度指标比实际值偏高,但坐标、边长、方位角仅有微小变化,在此输入独立基线的实际条数,软件将对平差后的精度指标进展修正,从而与独立基线平差结果的精度指标根本一致。坐标加常数组框坐标加常数是指坐标系常数,例如我国60带高斯坐标在y坐标上加500公里的常数,目的是为了防止出现负值。某些城市坐标系是以过城市中心或某特定点的子午线为中央子午线,往往在高斯坐标上加减一个平移常数。此处的坐标加常数起类似的作用对GPS三维向量网平差结果中转化的高斯平面坐标起作用,对6.3〔BL->XY〕和6.4(XY->BL)起作用,对二维联合平差不起作用。在该组框中输入平面坐标的加常数,以公里为单位。中央子午线、投影类型在该编辑框中输人中央子午线的经度,格式为:DDD.MMSS,分和秒必须占满两位,该软件所有的角度值〔方位角、纬度、经度〕的输人均采用此格式。例如:114.300751表示114度30分7.51秒,详细说明参见附录4;目前该软件提供的投影类型为高斯投影、UTM投影两类,根据测量工程的需要进展选择,我国测量工程一般采用高斯投影。226.6平均纬度、投影面大地高这两项参数用于“坐标转换"/“高程面坐标变换",对网平差的其它工程不起作用。计算控制点以不同高程面为参照面的坐标时,在转换前髙程面 n■■中输人与当前坐标对应的参照面的大地高〔正常高+高程异常〕,在转凱肓高麺fc 巾中输人要转换到的参照面对应的大地高。平均纬度可采用近似值,也可从地图上查取。2・2・7翻开工程对于已建立的工程,应选择“翻开工程"项,此时弹岀如图2.6的选择工程窗口:图2.6翻开工程在该窗口中直接输人或选定工程名〔以PRJ为后缀的文件丨后,用鼠标点. 按钮,工程名将显示在主菜单的顶部标题栏中,以后的操作都是面向该工程〔坐标转换工具除外〕2.2.8打印打印活动窗口的文件2・2・9打印预览标准Windows打印预览窗口2.2.10打印设置打印格式及打印机设置2.2.11退出3.“GBs数据处理"下拉菜单

菜单形式参见图3.1。图3.1GPS数据处理3.1数据数据又分为:三维坐标、二维坐标、一维高程点、地面边长、地面方位。该项数据有两种用途,一是用于控制网平差处理的解算基准,二是用于解求平面转换参数和高程拟合系数。3・1・1三维坐标作用是为三维平差输人固定点坐标。用鼠标单点该项,弹岀如图3.1的窗口,必须至少输人一个点的三维坐标,可以是三维空间直角坐标〔X,Y,Z〕,也可以是大地坐标〔纬度B,经度L,大地高H〕,B、L的格式为:DDD.MMSS,X、Y、Z、H的单位是米。不能将[X,Y,Z〕与〔8,L,H〕混合输入,并注意不要将三维空间直角坐标〔X,Y,Z〕中的〔X,Y〕与平面坐标[x,y〕弄混。删去点名,该点即被删除,双击格网中的数据单元,其底色变白后,可修改数据,当输至底行时,会自动弹岀新的空白行,所有数据向上翻动一行,列宽可用鼠标拖动来变宽或变窄。应特别注意点名必须与基线向量中的点名〔起点、终点〕完全一致。图3.2输入三维坐标二维坐标操作与3.1.1相似,起作用是为二维联合平差输入地面公共点坐标,一般至少需要两个公共点,假设仅有一个公共点,那么应采用“固定一点一方位〞的平差模式。应特别注意点名必须与基线向量中的点名〔起点、终点〕完全一致。一维高程点操作与3.1.1相似,作用是为高程拟合输入地面公共点的正常高。常数拟合模型至少需要一个公共高程点,平面拟合模型至少需要三个公共高程点,曲面拟合模型至少需要六个公共高程点。应特别注意点名必须与基线向量中的点名〔起点、终点〕完全一致。输入地面边长作用是为二维联合平差输入地面边长。鼠标单点该项,弹出图3.3的窗口,在该窗口中输人地面边长的起点、终点、边长值〔m〕中误差(cm),对于边长,中误差输人0来表示。应特别注意点名必须与基线向量中的点名〔起点、终点〕完全一致。起点边长值中误差(cm)0000001200000014105.752400□.000000图3.3输入地面边长图3.33・1・5输入地面方位作用是为二维联合平差输人地面方位角,操作与3.1.4相似。在该窗口中输人地面方位角的起点、终点、方位角值〔DDD.MMSS〕中误差(秒),对于固定方位角,中误差输人0来表示。应特别注意点名必须与基线向量中的点名〔起点、终点〕完全一致。3.2基线数据作用是选择所需的基线解文件,用鼠标单点该项,弹岀如图3.4的窗口。在该窗口中选取所需基线解的文件,首先点压“浏览"按钮,弹岀选择文件夹对话框,选择需要的文件夹。然后在“类型"下拉组合框指定文件类型,再到“待选基线文件"窗单点鼠标,Shift键+鼠标左键顺序选择文件,Ctrl键+鼠标左键任意选择文件。找到所需的基线文件并标记好之后,单击“选定-〉"按钮,所需的基线文件将岀现在已选基线文件窗中,点压“确定"按钮后,形成的基线向量文件〔*.GPS3dVector〕显示在屏幕上,这也就是三维向量网平差所需要的基线向量输人文件。应特别注意设置对话框中的“接收机/基线解类型"与选择的基线向量文件相对应。图3.4选择基线解算文件3.3GPS三维向量网平差〔无约束平差或约束平差〕作用是在WGS84空间直角坐标系中进展三维向量网平差,首先需要至少输入一个点的三维坐标〔参见3.1.1中的三维坐标项〕并生成基线向量文件〔*.GPS3dVector,参见2〕对于独立的GPS网,可取一个点的单点定位解〔从基线解文件查取〕作为固定坐标,进展无约東平差;假设网中联测了多个国家GPS点〔比方A级点、B级点〕,可全部作为固定点输人,进展约東平差。可以用〔X,Y,Z〕或侣,L,H)的格式输人。以表格形式显示在窗口中的坐标数据与名称为*.GPS3dKnownXYZ的文件内容互相对应,也可用文本编辑器编辑生成*.GPS3dKnownXYZ文件,表格中的数据随之改变,格式为:(点名) 〔X/B〕 (Y/L) (Z/H)对于同一控制网,如果采用不同生产厂商的多种类型接收机观测,并用各自的配套软件进展解算,得到的基线向量,有时存在方差阵不匹配问题,可采用不同的方差因子〔参见〕对基线的方差阵进展处理。操作方式是先用不同的工程名对每类基线给定相应的方差因子〔参见〕分别生成相应的基线向量文件〔*.GPS3dVecto门,然后用编辑器将其合并为一个作为最终的输入文件。假设想改变椭球参数,可到“设置〞项选择。完成坐标输入并生成基线向量文件后,单点该菜单项进展平差计算,结果文件〔*.GPS3dResult〕将显示在屏幕上。二维网联合/约束平差3.4.1联合/约束平差作用是进展二维联合平差,首先需要完成三维向量网平差并至少输入一个公共点的二维平面坐标〔参见3.1.2的二维坐标项〕,假设只有一个公共点,那么还需要输入至少一条地面边长〔归算到高斯平面上〕和一个地面方位角,当然也可以输入任意多个地面边长和方位角。地面边长和方位角可作为观测值进展联合平差,也可作为固定值进展约束平差〔参见3.1.4和3.1.5〕。以表格形式显示在窗口中的坐标数据与名称为*.GPS2dKnownXY的文件内容互相对应,也可用文本编辑器编辑生成*.GPS2dKnownXY文件,表格中的数据随之改变,格式为:(点名)〔x〕(y)

假设想改变椭球参数,可到“设置〞项选择。完成坐标输入并生成基线向量文件后,点击该菜单项进展平差计算,结果文件〔*.GPS2dResult〕将显示在屏幕上。3.4.2输出用户自定义任意两点相对精度CosaGPS提供了用户自定义输岀任意两点间相对精度的功能。具体方法为,首选需要形成用户要求的“点对〞文件,其文件名为:“工程名.GPS2dRel",其格式为一文本文件,每一行即为一个“点对〞〔起点点名,终点点名〕,“点对〞间用逗号或空格分隔,如:A01,A02A03,A08系统在平差时,自动判断该文件是否存在,假设存在,那么读取文件中的点对,并计算其相对精度,输岀到二维平差结果文件中的“平差前方位角、边长及精度〞信息栏中,为和存在直接观测值的“点对〞相对精度有所区别,其序号为“****〞。椭球面上三维平差在某一确定的椭球面上进展三维平差,把WGS84椭球到地方参考椭球的转换参数作为附加参数,在平差时一并求得。解算是在椭球面上进展的,不受投影变形的限制,可以进展覆盖全国乃至全球的大X围GPS控制网的数据处理。首先需要完成三维向量网平差并至少输入三个公共点的三维坐标〔参见3.1.1的三维坐标项〕可以输人(X,Y,Z)或〔B,L,H〕或〔B丄〕或H。即只知道某点的经纬度时,输人〔B丄〕,H为空〔不要输0〕;只知道某点的大地高时,输人H,〔B丄〕为空〔不要输0〕。结果文件名为*.GPS3dBLHResult.其它与3.3相似。3.6工程网(一点一方向)平差对于某些工程工程,比方大桥、大坝等,如果采用固定一个点的坐标、指定一个方向的方位角,并且选择相应的工程投影面,从而建立相对独立的坐标系,那么可选用该平差项。点击“GPS数据处理/工程网(一点一方向)平差",屏幕显示图3.5的对话框。图3.51程网(一点一方向)平差的输人信息在图3.5的对话框中,固定点信息有点名、平面坐标和正常高、大地坐标和投影面正常高,平面坐标可以是工程坐标系的独立坐标或高斯平面坐标;固定方位角一般是工程网中某一特定方向的方位角,例如大桥控制网的桥轴线方向、大坝控制网的坝轴线方向等。在平差前,应在“数据处理/设置"对话框中选择相应的椭球参数和中央子午线,一般是选择工程网对应的地方椭球的参数。相应的数据文件为:“工程名.OneFix"〔输人的数据文件,与对话框对应〕,“工程名.GPS2dResultT〔GPS二维平差结果〕,“工程名.GPS3dResult1”〔GPS三维向量网平差结果〕3.7GPS高程拟合作用是进展高程拟合,首先需要完成三维向量网平差并至少输人一个公共点的高程〔参见1的高程点项〕,点取该菜单项后,弹岀如图3.5的窗口,在该窗口中选择拟合模型,其中常数模型需要一个以上的公共高程点,平面模型需要三个以上的公共高程点,曲面模型需要六个以上的公共高程点。高程结果文件名为*.GPS1dResult.图3.6选择高程拟合模型3.8GPS三维秩亏自由网平差采用秩亏自由网平差时,选择该菜单项。首先进展“三维向量网无约束平差〞〔参见3.3〕,得到近似坐标文件“工程名.GPS3dApproximateXYZ",该文件是进展秩亏自由网平差平差的输人文件;然后进展“GPS三维秩亏自由网平差",由程序自动生成的用于秩亏自由网平差的输入文件有:工程名.GPS3dApproximateXYZ工程名.GPS3dFreeXXInput工程名.GPS3dFreeGxxInput工程名.GPS3dFreeQxxlnput其中,“工程名.GPS3dFreeXXInput"的内容为:总点数多余观测数单位权中误差(mm)点名1.0dX(mm)dY(mm)dZ(mm)X(m)Y(m)Z(m)点名之后的“1.0〞是一个标识数字,含义为该点属于稳定点组,可以根据实际稳定情况进展手工修改为“0.0〞,那么认为该点是一个不稳定点,不属于稳定点组。手工修改该文件之后,在屏幕提示“工程名.GPS3dFreeXXInput已存在,重新产生?",应选择“否〞。用于稳定性分析的输入文件有:工程名.GPS3dFreeXXQxx工程名.GPS3dFreeENUQenu文件“工程名.GPS3dFreeXXQxx"的内容为:总点数多余观测数单位权中误差(mm)点名dX(mm)dY(mm)dZ(mm)协因数阵文件“工程名.GPS3dFreeENUQenu"的内容为:总点数多余观测数单位权中误差(mm)点名dE(mm)dN(mm)dU(mm)协因数阵秩亏自由网平差的结果文件为:工程名.GPS3dFreeXX0ut工程名.GPS3dFreeQxxOut工程名.GPS3dFreeMxxOut工程名.GPS3dFreeMxxOut的内容为:前半局部为经典自由网平差〔网中含有一个固定点〕的空间直角坐标及其中误差,后半局部为秩亏自由网平差〔网中含有一个固定点〕的空间直角坐标及其中误差。3.9稳定性分析对于两期观测的变形监测网,各自先进展三维向量网无约束平差,再进展三维秩亏自由网平差〔参见3.8〕,最后再进展稳定性分析。特别需要注意的是两期控制网的控制点应一样,进展三维向量网无约束平差时的未知数序号应一样。为了满足未知数序号一样的要求,两期网中的固定点应是同一个点,并且基线向量文件中前面的基线向量的顺序在两期中应相互对应,保证推算近似坐标的顺序一样,从而保证了未知数的序号相一致。进展两期自由网平差时,应采用一样的近似坐标。输入文件为:第一期的.GPS3dFreeXXQxx或者.GPS3dFreeENUQenu第二期的.GPS3dFreeXXQxx或者.GPS3dFreeENUQenu结果文件为:工程名.GPS3dFreeQdd工程名.GPS3dFreeD文件“工程名.GPS3dFreeD"中的结果与输人文件有关,当输人文件是“.GPS3dFreeXXQxx"时,其中各行的数据为:点名dX(mm)dY(mm)dZ(mm)自由度标准化统计量XYZ当输人文件是“.GPS3dFreeENUQenu"时,其中各行的数据为:点名dE(mm)dN(mm)dU(mm)自由度标准化统计量ENU3.10设置作用是改变所需的参数设置,操作与第一局部的新建工程一样,参见图2.2。当工程已建好之后,假设想再改变其中的参数,就必须选择该项。注意:应经常查看设置项,确信有关参数正确。4.“查看"下拉菜单作用是查看主要的数据文件内容〔平差结果、观测值〕设置屏幕显示项〔工具栏、状态栏〕,参见图4.1。工具①坐标转换©帮助⑩曽“窗GFS—GFS测量嫌据处理通用软件包V5.0—[d»o]立件退〕GFS数据处理临〕D 為屉喧|平差结果卜三维向毘网观测值 ►—錐联合平差环闭合差一錐高程结果7工貝栏⑴7状态栏⑤三錐椭球面平羞图4.1查看数据文件5.“工具"下拉菜单该工具菜单参见图5.1,包含:闭合差计算,重复基线差,网图显绘,贯穿误差影响值计算“s屈FS—GFS测量数据处理通用软杵包¥5.0—[deMo]文件宦)GFS文件宦)GFS数据处理查看坐标转换©帮朋⑧□g^QI^^BISItL 闭合差计算重复基线差网開显绘辭8Q]网團显蛙[地方坐标]贵通俣差影响值计算GFS网设计輸出ACAJ_DXF网團图5.1工具菜单A01A02A01A02A04A03A04图5.2闭合环

5.1闭合差计算5.1闭合差计算闭合差计算是自动搜索和计算所有最小环路的闭合差。在执行3.2所述“选取基线"生成“工程名.GPS3dVector"后,利用该菜单项,将生成2个文件:“工程名.GPS3dLoop"和“工程名.GPS3dMisclosure"。"工程名.GPS3dLoop"是各个环路的端点点名,每个环路占一行,各点按连接顺序排列,如图5.2的环路可表示为:A01A02A03A04。假设需计算某一指定环路的闭合差,可以在“工程名.GPS3dLoop"中输人与该环路对应的点名构成的—行,保存文件后,再进展闭合差计算,屏幕弹岀如图5.3所示的对话框,应选“否"〔不重新生成闭合环路文件〕,计算完毕后,结果存到“工程名.GPS3dMisclosure"中。图5.3图5.3闭合环提示窗口5.2重复基线差为了计算重复基线向量各分量的差值,可在选取基线时〔参见3.2],选取全部基线〔不是为了平差目的,只是为了计算闭合差、重复基线差〕,在执行3.2所述“选取基线"生成“工程名.GPS3dVector"后,利用该菜单项,将生成文件“工程名.GPS3dRepeatBaseline",其内容是重复基线有关的数据。网图显绘网图显绘[WGS84]显示三维平差时的网图。由于二维联合平差时,增加了地面控制点,点将与三维平差时WGS84]有所不同,因而应采用“网图显绘[地方坐标]〞进展二维联合平差的网图绘制。贯穿误差影响值计算该功能主要为隧道施工控制网而设计的,其实质是根据控制网的洞口点和定向点精度、贯穿点的位置以及贯穿面的方向,在完成网平差之后,直接估算隧道贯穿误差影响值。为此首先人工建立一个贯穿误差引导文件,该文件也是一个标准的ASCII文件,命名规那么为“工程名.gti",其格式为:进口点号,进口定向点号,出口点号,出口定向点号,贯穿点号X坐标,Y坐标,贯穿面方位角.如图5.4所示的贯穿方案(贯穿点为MMM)可建立如下贯穿文件A12,A02,A03,A14,MMM,X,Y,a算例数据(demo.gti)如下所示:A12,A02,A03,A14,MMM,3320821.76615,2337.9802,85.3045为了选取最优的定向点方案,在一次计算中,可准备多种不同的进出口点与定向点的组合,每一种组合占一行。准备好引导

文件“工程名.gti"后,用鼠标单击“贯穿误差影响值计算",将自动计算贯穿误差影响值,并将结果存放在文件“工程名gto"中〔参见“demo.gto"〕。注意:在计算贯穿误差影响值之前,除准备好引导文件外,还须对该控制网进展平差计算,否那么贯穿误差计算失败。未建立贯穿误差引导文件时,将弹岀提示建立贯穿误差引导文件的对话框。5.5GPS网设计选择“工具/GPS网设计"〔参见图5.5〕进展方案设计。在进展GPS网设计时,需要准备两个文件:1〕各测站的设计坐标文件(*.xyz)格式为:基线固定误差(mm)基线比例误差(ppm)基线水平方位误差(“)点名X(m)Y(m)Z(m)各项之间用空格分隔,(XYZ)为地心为原点的空间直角坐标。如果只有各测站的高斯平面直角坐标的设计值,那么可以利用“坐标转换"功能得到经纬度(XY->BL),再把大地高参加形成BLH文件,进一步转换为XYZ文件〔BLH->XYZ〕。2〕GPS独立基线定义文件(*.line)格式为:起点终点图5.5GPS网设计

5.6输岀5.6输岀AutoCAD格式的GPS网选择“工具/输出ACAD_DXF网图〞〔参见图5.5〕那么输出AutoCAD的DXF格式的控制网网图。输入文件为:工程名.GPS3dXYHEFT工程名.GPS3dVector这两个文件是在“三维向量网平差〞(参见3.3)时生成的。6•结果坐标转换"下拉菜单作用是进展各种坐标变换计算,在这里提供了多项非常有用的工具,参见图6.1。该菜单项中的坐标变换与网平差的工程名无关,是独立的测量计算辅助工具,执行完本项功能后,假设再执行其它平差功能时岀现文件找不到或其他异常情况,是由于路径已被改变,执行“文件〞-〉“翻开工程〞即可恢复原来的工程路经和其他设置好的参数。

图6.1坐标转换6.1XYZ-〉BLH功能:三维空间直角坐标转换为大地坐标。输人文件*.XYZ输岀文件*.BLH上述两文件名称一样,后缀不同。操作步骤:1)在进展转换前选择“文件"菜单的“新建"项,编辑生成输人文件*.XYZ,其格式为:点名 XYZ也可采用任何其它文本编辑器生产该文件。各项以空格分隔,X、Y、Z以米为单位。设置坐标系参数:椭球长轴,椭球扁率分母(参见3.7)。在“坐标转换"菜单下选’XYZ-〉BLH"子项进展转换,此时屏幕岀现翻开文件窗口,选取输人文件〔*.XYZ〕转换结果将保存到*.BLH文件中,假设已存在同名点文件,那么在其尾部追加数据,同时屏幕显示输人文件〔*.XYZ〕和输岀文件(*.BLH)的窗口,供用户查看。结果文件格式为:点名 BLH经纬度B、L以度分秒〔DDD.MMSS〕为单位,大地高H以米为单位。假设想查看其它文件,可选取“文件〞菜单的“翻开〞子项,在屏幕岀现“翻开文件〞窗口后点取打算查看的文件名,该文件的内容将岀现在屏幕窗口上。6.2BLH->XYZ功能:大地坐标转换为三维空间直角坐标。输入文件*.BLH输岀文件*.XYZ上述两文件名称一样,后缀不同。操作步骤:在进展转换前需编辑生成输人文件*.BLH,其格式为:点名 BLH各项以空格分隔,经纬度B、L以度分秒为单位,大地高H以米为单位。设置坐标系参数:椭球长轴,椭球扁率分母(参见3.7)。执行程序进展转换,假设已存在同名点文件,那么在其尾部追加数据。4) 结果文件格式为:点名XYZ6.3BL->XY将大地经纬度转换成高斯平面坐标,与6.4联合使用可进展换带计算。其操作与6.4相似。XY->BL功能:高斯平面坐标转换为大地经纬度。输入文件*.XY输出文件*.BL上述两文件名称一样,后缀不同。操作步骤:1) 在进展转换前选择“文件〞菜单的“新建〞项,编辑生成输人文件*.XY,其格式为:点名 XY各项以空格分隔,X、Y以米为单位。假设X、Y含有固定的加常数,那么需在“参数设置"项输人X加常数和Y加常数(参见3.7)。2) 设置坐标系参数:椭球长轴,椭球扁率分母,中央子午线〔以度分秒为单位DDD.MMSS〕(参见3.7)。3) 在“坐标转换"菜单下选’XY-〉BL"子项进展转换,此时屏幕岀现翻开文件窗口,选取输人文件〔*.XY〕

转换结果将保存到*.BL文件中,假设已存在同名点文件,那么在其尾部追加数据,同时屏幕显示输人文件〔*.XY〕和输岀文件(*.BL)的窗口,供用户查看。结果文件*.BL格式为:点名 BL各项以空格分隔,经纬度B、L以度分秒〔DDD.MMSS〕为单位。同6.1.6〕。6.5XY1->XY2功能:二维直角坐标变换,转换模型为:x0,y0:平移参数/ (cosx0,y0:平移参数/ (cosa+(l+k/1000000)-、-sinasinaYx\cosa人y丿旧k:尺度参数〔ppm〕a:旋转角〔弧度〕注意:CosaGPS输岀的旋转角是以度分秒为单位〔ddd.mmss〕输入文件*.XYXY输岀文件*.XYXY_0坐标变换方法:三参数法〔平移、旋转〕转换模型为:x0,y0:平移参数'cosa+x0,y0:平移参数'cosa+、-sinasinaYx\cosa人y丿旧a:旋转角〔弧度〕注意:CosaGPS输岀的旋转角是以度分秒为单位〔ddd.mmss〕四参数法〔赫尔默特法:平移、旋转、缩放〕转换模型为:x0,⑴』x0)y0x0,⑴』x0)y0:平移参数k:尺度参数〔ppm〕a:旋转角〔弧度〕z, (cosa+(l+k/1000000)-、-sinasinaYx\cosa丿Iy丿旧注意:CosaGPS输岀的旋转角是以度分秒为单位〔ddd.mmss〕六参数法〔仿射变换法:平移、旋转、缩放〕转换模型为:(x](a(bc、(X1xX<y丿丿〔bycy<y丿=x0=(1+X /1000000)-cos(X )尺度旋转尺度=(1+Y /1000000)-sin(Y)尺度尺度旋转ayb=-ayb=-(1+X /1000000)-sin(X )y 尺度cy旋转=(1+Y/1000000)cos(Y)尺度旋转xO,y0:平移参数X戸广:X尺度参数〔ppm〕尺度Y亡:Y尺度参数〔ppm〕尺度X、十:X旋转角〔弧度〕旋转Y旋转Y旋转角〔弧度〕注意:CosaGPS输岀的旋转角是以度分秒为单位〔ddd.mmss〕操作步骤:1)编辑生成输人文件〔*.XYXY〕,格式为〔参见demo.xyxy"〕:点名公共点非公共点下面为某一“*.XYXY"的实例:A0012886585.7645531481.378729459.279031382.6500A0022891839.8474479813.840834711.8360-20285.9390A0032861398.5526509387.93474271.03209289.5760A0042819325.6136524901.0211-37801.978024804.2570B0012860046.5165524597.26592919.431024499.2250P0012865890.2564519087.7625选择转换方法〔3参数、4参数、6参数〕。屏幕岀现翻开文件窗口后,选择输入文件。结果保存到文件*.XYXY_0中。6.6XYZ1->XYZ2功能:三维直角坐标变换

,X1/X0,X1/X0、YY0,Z,、Z0,转换模型为:新+(1+k/1000000)-1£_£”X、zy_£1£YzX£_£1ZyX八丿旧XO,YO,ZO:平移参数k:尺度参数〔ppm〕£,£,£:X,Y,Z的旋转角〔弧度〕xyz注意:CosaGPS输岀的旋转角是以度分秒为单位〔ddd.mmss〕输入文件*.XYZXYZ输岀文件*.XYZXYZ_O操作步骤:1)编辑生成输人文件〔*.XYZXYZ〕,格式为〔参见“demo.XYZXYZ〞〕:公共点点名公共点点名X旧'点名非公共点£ •…2) 选取“坐标转换"菜单的子项“XYZ->XYZ",屏幕将岀现“翻开文件"窗口,选择输人文件〔*.XYZXYZ〕。3) 转换结果保存到文件*.XYZXYZ_0中。6.7髙程面坐标变换对于工程控制网,例如桥梁、大坝等的施工控制网,为了减小投影变形,从而使用坐标反算的边长值与实测值之间的系统性差异较小,一般是以最重要的某一施工高程面作为坐标系的投影面,“高程面坐标变换"是将当前高程投影面对应的平面坐标变换到另一个高程面,须在工程的设置对话框中输人这两个高程面的大地高,并输人测区平均纬度,同时还应检查坐标系统对应的椭球参数是否正确。点击该项菜单后,屏幕提示输人数据文件,其格式为:点名XY。计算完毕之后,结果文件内容将显示在屏幕上,构造同输人文件,其名称是在输人文件名后加“1”。坐标转换帮助(出XVZ->BLHBLH->XYZBL-AXY

XV->BL高程面坐标变换xvz->xyz二维转擬参数

一维转换参数图6.2高程面坐标变换

7.“帮助"下拉菜单点击“关于CosaGPS2000”,屏幕显示程序标志,双击标志区或按Esc键返回程序状态,参见图7.1。图7.1程序图标欢迎您使用

科傻软件門子信侖亡门吕勞.uom附录1.功能菜单框图文件(F)GPS文件(F)GPS数据处理(G)查看(V)附录2.算例及说明参见Example目录下的算例文件。1)工程文件demo.prj2)坐标和观测值demo.asc(基线解文件)demo.GPS3dKnownXYZ(三维空间直角坐标)demo.GPS2dKnownXY〔二维平面直角坐标〕demo.GPS2dDistance〔地面边长值〕demo.GPS2dAzimuth〔地面方位角值〕demo.GPS1dKnownH〔正常高〕demo.GPS3dVector(GPS三维向量观测值)3)平差结果demo.GPS1dResult〔高程拟合结果〕demo.GPS2dResult〔二维联合平差结果〕demo.GPS3dResult〔三维向量网平差结果〕demo.GPS3dBLHResult〔椭球面上三维平差结果〕demo.GPS3dBLH〔大地经纬度、大地高〕demo.GPS3dXYH〔高斯平面直角坐标和大地高〕demo.GPS3dXYHEFT〔三维向量网平差后转换得到的高斯平面直角坐标、大地高及误差椭圆元素〕demo.GPS2dXYEFT〔二维联合平差的平面直角坐标和点位误差椭圆元素〕4)坐标转换demo.BLdemo.XYdemo.XYZdemo.BLHdemo.XYXYdemo.XYXY_Odemo.XYZXYZdemo.XYZXYZ_O5〕闭合差计算文件demo.GPS3dLoop1CosaGPS基线文件格式起点终点AX AY AZQ2Q2Q2AXAX AYAY AZAZ每条基线向量占一行,基线向量的各分量的单位为米,其方差/协方差的单位是平方厘米。

TGO基线文件格式pjTrimbleGeomaticsOffice-a2-凰FileEditViewInsertSelect

NewProject... 匚trl-l-NOpenProject... Ctrl-l-0CloseProjectDeleteProject...Import...Export,.,SheetSetup...Fi&]Plot/Print... 匚讯+Fi&]ProjectProperties,.,F12La22AlExit附图1TGO导岀文件TGO软件可以根据用户指定的格式输岀基线数据,输岀CosaGPS相兼容的数据格式的操作如下〔详情参见TGO使用说明书〕1〕.选主菜单File/Export(导岀)参见附图1

2〕.选Custom/Newformat(自定义/新格式)创立新格式参见附图2附图2TG0自定义新格式3〕按附图3所示定义格式文件Name:CosaGPSExportfrom:GPSVectordata(中文版:GPS基线向量)中间大方格〔Formatbody〕的内容应在一行内输完,如下:

[From Point Name:10][To PointName:10][DeltaX:15.3][DeltaY:15.3][DeltaZ:15.3][CovarianceXX:[CovarianceYY:20.14][CovarianceZZ:20.14][CovarianceXY:[CovarianceXZ:20.14][CovarianceYZ:20.14]附图3文件格式4)采用该格式输岀即可Gamit基线文件格式

利用Gamit1进展基线处理,可以输出两种格式的基线解算结果文件,分别称为Q-FILE〔详细格式〕和O-FILE(简要格式),每个文件中有两处地方含有基线向量数据,第二处是平差所需要的数据,为了用CosaGPS获取该局部数据,应在该局部的上一行参加识别标志。1)GamitQ-FILE中基线格式为:Baselinevector(m):NRC1(Site1)toSCH2(Site2)X335859.60307Y956232.16605Z668091.18766L1213889.39504+-0.01345+-0.01506+-0.02364+-0.00667(meters)Correlations(X-Y,X-Z,Y-Z)=-0.12947-0.08323-0.84194应在文件的后局部的第一条基线的Baselinevector的前一行参加的识别标志是:COSAGPSFORGAMITQ-FILE2)对于GamitO-FILE格式的基线文件〔文件中每条基线占一行,此处显示为多行〕:0011_00142001.238XX-3324.5802+-0.0029Y282.5566+-0.0044Z282.5566+-0.0044Z4674.5900+-0.0014-3274.0067+- 0.0030LCorrelations(X-Y,X-Z,Y-Z)=-0.82053-0.788900.84825参加的识别标志是:COSAGPSFORGAMITO-FILEAshtechSolution输出自定义格式基线文件AshtechSolution可输出O文件(二进制)或用户自定义文件(*.UDA),目前CosaGPS采用的格式是:[FileHeaderStart][Text:CosaGPSforSolution][FileHeaderEnd]

[FromSiteID][ToSiteID][Proc.Xp.][Proc.Yp.][Proc.Zp.][Proc.Xp.Error][Proc.Yp.Error][Proc.Zp.Error][Proc.XYCorr.][Proc.XZCorr.][Proc.YZCorr.]各项的含义是:>FromsiteID——起点标识符。>TositeID——终点标识符。>Proc.Xp.——基线向量的X分量。>Proc.Yp.——基线向量的Y分量。>Proc.Zp.——基线向量的Z分量。>Proc.Xp.Error 基线向量的X分量的标准差。>Proc.Yp.Error 基线向量的Y分量的标准差。>Proc.Zp.Error 基线向量的Z分量的标准差。>Proc.XYCorr.——基线向量的XY互相关系数。>Proc.XZCorr.——基线向量的XZ互相关系数。>Proc.YZCorr.——基线向量的YZ互相关系数。输出结果如下所示〔每条基线占一行〕:CosaGPSforSolutionDISCEUC2-164.2817160.500061.05840.0015250.0022270.0024190.338219-0.389250-0.650942DISC0205-207.2825154.213424.58720.0014530.0020830.0022390.342757

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论