人教版新起点五年级上册数学教学设计稍复杂的方程_第1页
人教版新起点五年级上册数学教学设计稍复杂的方程_第2页
人教版新起点五年级上册数学教学设计稍复杂的方程_第3页
人教版新起点五年级上册数学教学设计稍复杂的方程_第4页
人教版新起点五年级上册数学教学设计稍复杂的方程_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习必备 欢迎下载学习必备 欢迎下载第第#页人教版新起点五年级上册数学教学设计——稍复杂的方程这部分内容共有三道例题。它们的共同点是每道例题都担负着教学列方程和教学解方程的双重任务。这是本单元学习的难点。1例.1。编写意图例1的题材源于足球的构成,即一个现代足球是由12块正五边形的黑色皮和2块正六边形的白色皮制成的。这种完美的球形结构,令一些数学家、建筑学家和化学家着迷。教材呈现给同学们的问题是:已知白色皮有20块,比黑色皮的2倍少4块,问黑色皮有多少块?这道题的数量关系,学生容易想到的有以下三种形式黑色皮的块数 一白色皮的块数=黑色皮的块数 一=白色皮的块数黑色皮的块数 =白色皮的块数+比较而言,前两种形式的数量关系,更容易理解,而且都能引入形如的方程,有利于达成既学列方程,又学解方程的教学目标。因此,教材的解答,选用了第一种形式的等量关系,即把黑色、白色皮的块数关系看成一个数的几倍与另一数比大小的关系。与其相应的顺思考问题,就是求比一个数的几倍多(或少)几的数是多少。例1若用算术方法解,需要逆思考,思维难度较大,学生容易出现先除后减的错误。通常不作教学要求。这里用方程解,思路比较顺,体现了列方程解实际问题的优越性。从这里开始,教材要求学生自己写出用字母表示未知数的设句。列出方程之后,怎样解这样的方程呢?实际上,形如 的方程,是由与 综合而成的。因此,教材介绍的解法,先把作一个整体,求出等于多少,再求等于多少。最后,提示学生交流不同解法,并继续提醒“记住验算”。教学建议(1)教学前,可以组织两个内容的准备性练习,为新授做好铺垫。一是针对几倍多(少)几的数量关系,进行列方程的练习。如:公鸡只,母鸡只,比公鸡只数的倍少只。二是解方程的练习。如:一=4 =等。(2)出示例题后,首先引导学生审题,识别哪些信息是解决“求黑色皮块数”这个数学问题所需要的。然后分析白色皮块数与黑色皮块数之间的关系,如有必要,可画线段图帮助分析。然后提问:①怎样把表示什么写清楚?②怎样列方程?应当允许学生得出不同的数量关系式,列出不同的方程。教师选择一=讨论它的解法。强调先把看作一个整体,先求出等于多少,再求出等于多少。然后让学生自己检验。接下去,就可以请列出不同方程的学生说出自己所列的方程,如一=或x+4这时就完全可以让学生自己陈述解方程的过程了。教师应注意引导学生观察解的过程中,发现它们“殊途同归”,都能转化为X4最后,可以引导学生总结列方程解决问题的步骤:①弄清题意,找出未知数,用表示;②分析、找出数量之间的相等关系,列方程;③解方程;④检验,写出答案。2关.于练习十二中一些习题的说明和教学建议。第题,练习解形如 方程。最后一小题一 =略有变化,一般学生能自己解决。对确感困惑的学生,可指导他们先算 m第〜题都是实际问题,其中第 题,虽然题材各异,但它们的数量关系都与例1类似,都是一个量比另一个量的几倍多(少)几,都是求作为比较标准(即看作“一倍”)的那个量。这些问题,都可以让学生独立解答。练习后,教师应引导学生注意它们的共同点,并总结解决问题的经验。第6题,其中亚洲的面积(包括岛屿)约为440万0平方千米。第7题,题材与表现形式富有趣味。题目中提供了华氏温度与摄氏温度的关系,这个关系也可以说成华氏温度比摄氏温度的1?倍8还多32度。练习时,可以让学生自己代入关系式解答,再引导他们用几倍多几的语言表达两种温度之间的关系。第2题与第8题的数量关系相类似,都是某一总数由两部分组成,其中一部分为两个数的积。第题,可让学有余力的学生选做。可以这样想:(一a 是一个除法算式,当它的结果是时,说明被除数是,即=;当它的结果是时,说明被除数与除数相等,即 =。这样的方程前面尚未出现过,可以利用加减法关系,推得=与=—8最后一题为思考题。容易看出,和的最高位是1即 代入原式,得个位上+=说明=O观察十位与千位, =因此百位上=++3入=得=83.例2。编写意图例2创设了购买两种水果的现实问题情境。如果撇开各数量的具体内容,就它的数学意义来讲,可抽象为两积之和的数量关系。这种数量关系在生活中经常能遇到。而且,理解了两积之和的数量关系,也就容易理解两积之差、两商之差的数量关系。在例2中组成两积的四个因数,有两个是相同的,这就可以根据分配律,得到含小括号的方程。这些都使例2具有举一反三的典型意义。教材给出了两种方程,其一为两积之和等于已知的总数,让学生自己解答。其二为含小括号的方程,介绍了把小括号内的式子看作一个整体求解的思路和方法,并留有空白让学生自己解完。教学建议(1)教学例题前,可以先复习两积之和的实际问题,如:妈妈买了 苹果和 梨,已知梨每千克 元,苹果每千克 元,妈妈一共要付多少钱?让学生独立列式计算,并说出数量关系:苹果的总价+梨的总价=总钱数+ = .2)()教学例题时,可以先把复习题改为:妈妈买了 苹果和梨,共付13.元2钱,已知梨每千克2.元8,苹果每千克多少钱?学生容易看出前后两题的数量关系没变,只是已知数和未知数交换了位置。因此,完全可以让学生自己列出方程并解答。解:设苹果每千克元。X 二然后,出示例,即把梨的数量由改为,让学生审题后,教师可提出问题:除了像上题那样列方程之外,还可以怎样列方程?有了上面的铺垫,学生不难想到:(苹果的单价+梨的单价) =总钱数并根据这个等量关系列出方程。接下去就可以引导学生把小括号内的 +看作一个整体,先求出+=?,剩下的解题过程可以让学生在课本上完成。()作为补充练习可以给出一个方程,如:(+) =让学生口头编出具有现实意义的问题,在小组内交流。这样的练习既有助于学生掌握数量关系,又能使学生初步体会这一数量关系广泛的现实意义。4.例3。编写意图例3的内容是关于地球表面海洋面积和陆地面积的计算。它的特点是问题含有两个未知数,一般通常用两个已知条件说明两个未知数的关系。如给出两个未知数的和与差,或给出两个未知数的倍数关系与两个未知数的和(或差)。具有这种数量关系的问题,在算术中称为“和差”、“和倍”、“差倍”问题。若用算术方法解,思路特殊,需要分别教学。改用方程解,都可归结为解形如的方程,思路统一,解法一致,学会其中之一的解法,其他几种就很容易类推解决。在实际生活中,也常常会遇到一些具有这种数量关系的问题。特别是当两个数的倍数关系用分数、百分数表示时,这样的问题就更常见了。像这样含有两个未知数的问题,在本单元之前,学生还没接触过。但它与学生以前学过的不少内容有关。比如,已知两数,可以求出它们的和、差及倍数关系,这是小学低年级的小学内容。现在,从两数的和、差及倍数关系中选取两项作已知条件,反过来求两数各是多少,这就是我们在这里讨论的问题。可见,所谓的“和差”、“和倍”、“差倍”问题,实际上是已知两数,求它们的逆思考问题。在小学中年级,曾出现过只有两个已知条件,却要两步计算解决的实际问题。如,舞蹈队有男生20人,女生人数是男生的2倍,舞蹈队共有学生多少人?女生比男生多多少人?这类问题的特点是选取两数之一作一个条件,再从两数的和、差及倍数关系这三个量中选取一个为另一个条件,然后求三个量中的其他两个量。不难看出,例3也是这类两步计算问题的逆思考问题。解答例3,首先碰到的第一个问题是设未知数。学生已有的经验是“求什么设什么”。现在面临一道题中要求两个未知数各是多少,究竟设哪个为,另一个又怎样表示?这是必须突破的一个难点。就数学本身来说,和差倍关系的两个未知数,任选一个设为都是可行的。同样,另一个未知数的表示方法也有两种,即选用两个已知条件中的任何一个都能表示。比较而言,在各种解法中,把作为比较标准的未知数设为,则用含的式子表示另一个未知数就比较容易。教材采用的就是这种方法。设陆地面积为乂亿平方千米,根据两个量的倍数关系这个条件表示海洋面积,再根据另一个已知条件(两部分面积的和即地球表面积),列出方程。这里第一次出现了形如X 的方程。X考虑到学生的知识水平和接受能力,教材没有出现合并同类项等术语,而是启发学生运用乘法分配律,将原方程转化为学生已会解的形式( )x=。这与合并同类项的方法实质上是一致的。求出陆地面积后,接下去怎样求海洋面积?有两种选择。即任选两个已知条件中的任何一个都可以。教材以两个同学互相交流的形式,对两种算法都作了介绍。教学建议(1)教学例3前,可以采用口答形式进行一些写出含有字母式子的填空练习。如:学校科技组有女同学X人,男同学是女同学的倍,男同学有()人,男女同学一共有()人,男同学比女同学多()人。还可以给出复习题:地球上的陆地面积为1.亿5平方千米,海洋面积约为陆地面积的2.倍4。地球的表面积是多少亿平方千米?让学生列式计算出地球表面积是5.亿1平方千米,作为新授的铺垫和过渡。(2)教学例3时,可以先让学生说出已知条件,并根据已知条件画出线段图(暂不标出“X”)。再让学生说出所求问题,明确要求的未知数有两个。然后利用线段图启发学生思考,先设哪一个未知数为X,根据已知条件,另一个未知数该怎样用含有字母的式子来表示。根据学生的回答在线段图上标注X和。然后引导学生想:一个条件已经用来表示第二个未知数了,还可以根据哪个条件找出等量关系列方程?由此列出课本介绍的方程。然后将方程和复习题的算式进行对比:+ =x+=x帮助学生沟通新旧知识的联系,进一步理解数量关系。如果学生提出不同的方法,可酌情加以比较,如:让学生观察这些方程,容易看出解方程都比较麻烦。如果学生求出陆地面积后,怎样求海洋面积,有两种方法。学生喜欢用哪一种都可以,不必强求一律。(3)例3的检验,应予以重视。可以提出问题:除了代入方程检验之外,还有没有其他的验算方法?学生一般能够想到,验算两个得数的和与商,看是否等于已知数。教师可以指出,在解决实际问题时,这样验算比先检查方程,再把X的值代入方程检验,更有效,也更简便。(4)引导学生小结时,可以着重明确以下三点:第一,两个未知数怎么办?可以先选择其中一个设为X,列方程解,再求另一个;第二,两个已知条件怎么用?可以把其中一个用来写出含有字母的式子,表示另一个未知数,另一个用来列方程;第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。5.关于练习十三中一些习题的说明和教学建议。第1题,练习解含有小括号的方程。熟练之后,允许学生简化解方程过程的书写。如:X=11.4X=11.4第2题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。第3题,数量关系为两积之差的实际问题。如学生理解题意有困难(特别是农村学校),教师有必要作些说明。如水表有什么用处,收取的水费是怎样计算出来的。还可以从已知的10室1入手,先让他们列式计算,10室1第二季度的水费是不是80元。即一 = (一5= (元)然后再设 室上次读数为吨,并列出方程,这样就不会感到困难了。第题的数量关系仍为两积之和,但两个积都含未知因数,所以列出的方程形如 。把它作为例与例配套练习的过渡比较合适。第题,练习解形如 的方程。熟练以后,允许学生简化解方程的书写过程。如:解4=第6题,含两个未知数,已知条件是两数的和与差(两个相邻自然数的差是1),它与已知“和倍”、“差倍”关系的问题略有不同的是,设两个数中的任何一个为都可以,不存在解方程时简便或麻烦的问题。第7题,为鸡兔同笼问题的变式。题中的隐蔽条件是鸡有2条腿,兔有4条腿。由于鸡兔数量相同,所以列出的方程形如 。第8题,含两个未知数,已知条件为两数之差与倍数关系。可以让学生选用自己喜欢的方法,列出方程。第9、10题都是两积之和数量关系的实际问题,而且两个积中都有相同的数,所以都能转化为或直接列出含小括号的方程。区别只是第9题的相同因数是未知数,第10题的相同因数是已知数。教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。第11、*12题*为选做题。两题难度都不大,一般学生都能解决。第题只要把口里填入的相同数设为,就转化为熟悉的方程一=8第题可先从方程的两边同时减去,即得二0这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论