量子力学-近代量子力学及疑难问题_第1页
量子力学-近代量子力学及疑难问题_第2页
量子力学-近代量子力学及疑难问题_第3页
量子力学-近代量子力学及疑难问题_第4页
量子力学-近代量子力学及疑难问题_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《近代量子力学及疑难问题》专题讲座1中国科学技术大学近代物理系张永德[第一讲]量子力学的心脏——广义杨氏双缝实验及双态系统2目

录3序言一,杨氏双缝实验难说之处一个常犯的原则性的画图错误导致路径积分的思想一个两难回答的问题——每个电子怎样穿过缝的?一个难于进行的计算——强度分布计算关于“难说”的再举例与分析二,广义杨氏双缝实验之一——极化电子杨氏双缝实验1)极化电子束入射的杨氏双缝实验分析2)一般极化的杨氏双缝实验计算三,广义杨氏双缝实验之二——激发原子的杨氏双缝实验四,广义杨氏双缝实验之三——带AB效应的杨氏双缝实验1)方程求解与结果描述不可积相因子问题两种形式物理性质分析五,广义杨氏双缝实验之四——双态系统:各类“whichway”实验和各类qubit中子干涉量度学实验光学半透片3)作为qubit的条件,各类qubit4)各类Schrodinger猫态,Schrodinger猫佯谬解释六,分析与结论参考文献4序

言5Young双缝实验是量子力学中最初的、最普通的、最著名的、也是最奇特的实验:它表面浅显易懂,其实深邃难以捉摸。很难说清楚;它很容易用程差办法作简易说明,但又难以精确求解Schrodinger方程,以得到强度分布;它出现在所有量子力学教材中,是众所周知的基础性实验,却又常常被人们忽略了它许多重要和必要的侧面。它是量子力学中最古老、最普通的实验,但近代却又不断出现花样翻新的新版本。对它的思索能导致路径积分的思想。由此就能理解Feynman的话:Young氏双缝实验是量子力学的心脏。它确实是最富于量子力学味道的实验,是理解量子力学本质的关键。下面从广泛角度对它进行分析。一,杨氏双缝实验的深邃——电子的波粒二象性一个常犯的原则性画图错误:漏画了电子源和双缝之间的单缝屏。这使得由源入射到双缝上的两条路径的程差不固定,从而不可能产生干涉花样。见Feynman书[1]。书中共有杨氏双缝实验图达7幅之多!物理实感。严谨学风。科学态度。导致路径积分的思想63)一个两难回答的问题——单个电子怎样穿过缝的?只就单个电子、单个中子说,对它路径上的which

slit、which

way问题,常常回答为:“客观上应当是确定的,只是我们不知道而已,一旦知道就会改变原来的状态”。这种思想可以简述为“确定,但不确知”。也有人形象地说:“电子不是孙悟空,只能从两缝之一穿过去”。这是个两难回答的问题——回答困难;绕过去不回答。说:“这是个科学之外的问题”;或是说:“缝屏前的入射电子消失了,在缝屏后接受屏上某处电子被探测到了”。——Feynman:

I

can

savely

say

that

nobodyunderstands

quantum

mechanics。vi)正确的,应当说:从两缝同时过去,两条路径的两7微观粒子的行为有时”像”宏观的波、有时又“像”宏观的粒子;其实它们本性既非宏观的波也非宏观的粒子。采用宏观语言作个不确切地形容:波粒二象性(苏州西园济公)。不同于宏观情况,对微观粒子的实验观测不可避免地会干扰观察对象。微观粒子“像”什么,与怎样观测即测量哪种类型的力学量有关——观测结果依赖于观测类型。观测导致状态的塌缩,不同类型的观测导致态的不同类型的塌缩。因为,不同观测导致量子态用不同本征函数族展开,决定了接着发生的不同的随机塌缩,使人们产生不同的印象。微观客体的“粒子形象”完全依赖于“俘获”这一类型的实验。量子态像一个个极易破碎的玻璃杯,像对外界十分敏感的小女孩的面孔。89务必注意,在思辩微观世界中的量子力学时:不要使用宏观世界“测量不干扰”概念,将测量结果外推到测量之前;不要将经典物理学的“经典语言”绝对化。道,可道,非常道。解释iv)是唯一符合全部实验又逻辑自洽的解释。西方科学的精髓本来就是:“逻辑实验主义”。

相信也只能相信:实验+逻辑

只要无法知道电子是从哪个缝过去,就会发生干涉;一旦用任何办法知道每单个电子是从哪个缝过去的,干涉花样便消失。原因:不同的好量子数 可区分。104)难于进行的计算——强度分布的唯象计算[1]可用Born近似计算接受屏上既有干涉又有衍射的强度分布。设粒子前进方向是 ,双缝沿 方向:这里,

平面取极坐标。

分别是自双缝之间的0点到观察点和势散射点的矢径。

分别是它们在

平面上的投影。 。为两缝间的距离。取两条缝的衍射作用为等效势(等效势衰减长度):积分对 可先积出。经过一些由于 不含 ,

的特殊函数计算[2],将结果用面内变数 表示:11将它写为柱面波散射的形式:,可得散射振幅:最后得到柱面散射波下的微分散射截面:这就是既考虑两个单缝干涉、又考虑(干涉条纹系列的)包络是两个单缝衍射分布总强度的表达式。其中,i) 双缝干涉因子,极值条件

;ii) 两个单缝的总衍射因子。此包络稍有误差。这是由于所取位势不很妥当的原故,并非原理性缺陷。124)关于“难说”的再举例与分析。13当然,接着又正确地说:“We

also

note

that

one

can第一,[3]中一段文字的分析:该处在正确地说了:Only

when

there

is

no

way

of

knowing,

not

even

inprinciple,

through

which

slit

the

particle

passes,

do

weobserve

interference.之后,又说道:“As

a

small

warning

we

might

mention

that

it

is

notevenpossible

to

say

that

the

particle

passes

through

both

slthesame

time,

although

this

is

a

position

often

held.

Theproblemhere

is

that,

on

the

one

hand,

this

is

a

contradictorysentencebecause

a

particle

is

a

localised

entity,

and,

on

the

othhand,there

is

no

operational

meaning

in

such

a

statement.”子同时穿过两条缝的两点理由都不成立。这两条理由是,其一,粒子是局域化的东西,因此不能说它从两条缝同时穿过,说它从两条缝同时穿过是矛盾的;其二,从两条缝同时穿过说法不具有可操作意义,因为真要测量究竟从哪条缝穿过,就必定发现是从两缝之一穿过的。对第一条的辩驳是,有什么理由事先规定微观客体是局域化的东西呢?难道它们的本性是粒子吗?!难道它们的“粒子面貌”不正是我们总是采用“俘获”这类测量方式将粒子“逼向”位置本征态所造成的吗?!有什么理由把这一类测量结果当成被测微观客体在测量之前就客观存在的面貌呢?!对第二条的辩驳是,怎么能说“从两条缝同时通过”的说法“没有可操作意义”呢?!这种批评是批评者的思想14沉二,广义杨氏双缝实验之一——极化电子杨氏双缝实验光子、电子都是极化的。∴ 杨氏双缝实验应当是极化的!1)极化入射电子束的分析。

其极化方向朝上。同时,在缝屏两缝之一(比如上缝)的后方添加一个小线圈,线圈中通以适当大小电流,线圈电流所生磁场使得穿过上缝经过线圈的电子,在进动之后,自旋刚好翻转朝下。这样,到达接受屏上的电子便可以用它们的极化方向来区分了:(未经翻转)自旋仍然朝上的电子是下缝过来的;(经过翻转)自旋朝下的是从上缝过来的。结论:干涉花样消失了!—好量子数为,正交性使干涉消失。152)一般极化的杨氏双缝实验计算设i)

两缝之间距离d>>缝宽a;

偏角 很小。ii)磁场使上缝电子自旋绕y轴自z偏转角;而下缝过来的电子自旋仍然朝上。于是,在接受屏上c点的旋量波函数为和归一化系数

为这里,两束之间的相位差;16如果只测+z方向自旋的情况。即,探测点 安放的是对+z

自旋取向灵敏的探测器。这时必须将

按本征态 展开。按此重新表述上式,于是,测得的强度为由此表达式可看出:强度还依赖于自旋转角

:自旋转角 固定,条纹极值如 ,条纹随程差( )而变,同前结果。如 ,上缝自旋向下,干涉消失,与 无关。17如果只测+x方向自旋,

点只安放对敏的探测器。这时须将

按 本征态自旋取向灵展开。由于在 表象中, 。于是有相应探测到的强度将为决定,条纹角间距由此得知:i)干涉极值位置依然由程差,

»d,对电子ii)对的依赖关系略为复杂。18于是,空间干涉花样和

自旋取向相关了。特别是,即便上下两缝自旋态为 时,如设想将对极化灵敏的探测器绕(粒子行进方向)y轴旋转,就能一再观察到:某一单缝衍射双缝干涉另一单缝衍射这种循回过程。19

若缝宽 并不很小于双缝的间距d,

则应考虑单缝衍射的调制。此效应可近似处理成为乘以下面因子:这里 为单缝的宽度。例如,对,有20三,广义杨氏双缝实验之二——激发原子的杨氏双缝实验可以用原子代替电子来做杨氏双缝实验。这是利用“内部自由度”——用入射原子是否激发作为识别手段,识别每个原子各自从哪一个缝过去的。这是众多“which

way”实验中一类。由于原子有内部结构——内部自由度,于是可以利用各种激励内部自由度的办法去查明“到底是从那条缝(或是那条路径)过来”的问题。比如,在两条路径中的一条上(或者,双缝的一条缝后)实施适当波长的激光辐照,使原子共振激发至激发态;而另—条路径上则不照射。与此相应,会合点处则安置对原子是否激21四,广义杨氏双缝实验之三——带Aharonov-Bohm效应的杨氏双缝实验1)经典力学中,描述电磁场和带电粒子运动的Maxwell方程和Lorentz力公式,都是用场强表达的.引入电磁势只是为数学上方便,并不认为有物理意义,只有在规范变换下不变的场强才有物理意义。量子力学中,电磁场下

Schrodinger方程虽然用电磁势表示,但由于电磁势经规范变换时仅导致波函数多一个相因子(方程定域规范变换不变性),因此人们一直认为在量子力学中,也如同在经典力学中一样,只有电磁场的场强才具有可观测的物理效应,电磁势并不具有直接可观测的物理效应。但是,1959年Aharonov和Bohm提出[4],在量子力学中,在某些电磁过程中,具有局域性质(因为是关于空间坐标的微商)的电磁场场强不能有效地描述带电粒子的量子行为,电磁势有直接可观测的物理

效应。现对此作一简明分析[5]。这里只讲述磁AB效应。可用如图理想的含AB效应杨氏双缝实验来说明。22在电子双缝实验的缝屏后面两缝之间放置一个细螺线管。通电后管内≠0;但管外=0,矢势≠0。这个细螺线管产生一细束磁力线束,称为磁弦。下面的理论分析表明,相对于没通电的情况来说,通电后,接受屏上干涉花样在包络(干涉条纹极的轮廓线)不变情况下所有极值位置都发生了移动。电流改变时,峰值位置也跟随改变;电流反向,峰值位置也反向移动。下面对此作一简单分析。电子双缝实验装置能够做成功,条件是应当保证两个缝处电子波函数是相干分解,所以两缝处电子波函数的位相差将是固定的。不失一般性,可以假设它们相同,合并成A点,将其简化为上图二。通电之前,C点的合振幅为。通电之后,。于是有,23直接验算即知,此方程的解为注意,这里的相因子在B≠0的区域与路径有关(不仅与两端点有关),因而是不可积的;只在B=0的区域与路径无关(这正说明,磁场毕竟是一种物理的实在,不能通过数学变换将其仅仅只转化为某种相因子)。这个相因子存在表明,即使粒子路径限制在电磁场场强为零的区域,粒子不受定域的动力学作用,但电磁势(沿粒子路径的路径相关积分)仍会影响到粒子的位相。于是,在通电情况下,C点的合振幅成为这里,指数上线积分的脚标1和2表示积分分别沿路径1和2进行。大括号外的相因子是新增加的整体相因子,没有可观测的物理效应,可以略去;但是大括号内相因子为新增加的内部相因子,它会改变两束电子在C点的相对位相差,从而改变双缝干涉的极值位置。这个内部相因子还可改写为:24这里是由路径1和2所包围面积内的磁通。由于这个相因子并不改变单缝衍射的强度分布,在条纹移动的同时,诸条纹极值的包络曲线仍不变。这些结论很快为实验所证实[5]。注意,此相因子是几何的,不含粒子动力学状态参数,与状态无关。2)向电磁AB效应的推广众所周知,电磁现象是Lorentz变换不变的,磁的和电的现象经过Lorentz变换可以相互转换。因此上面的磁AB效应应当扩充为包括电AB效应在内的Lorentz

变换协变形式。这时,上面关于相因子的路径积分应当扩充为于是这个相因子成为如下形式由于在Lorentz变换下是个标量,因此总的电磁AB效应是Lorentz变换不变的。此外,总的电磁AB效应也是规范变换不变的。因为,对于任一可微函数所引导出的规范变换与相比较!25五,广义杨氏双缝实验之四——双态系统:各类

“which

way”实验和各类qubit1)中子干涉量度学[7]与中子旋量干涉——又一种“which

way”实验——广义杨氏双缝实验一单色热中子束,于A点进入中子干涉仪(整块柱状单晶硅挖成“山”字形做成),由于Laue散射被分解成透射和衍射的两束。分别在B和C经反射,交汇于D点。注意可以单中子入射,而B、C两点间却已拉开为宏观的距离,是单个中子的两条路径态的相干叠加!其中AC束也可穿过一横向均匀磁场,区间为。假定从A到D的这两条路径除磁场外完全对称,在中子极化方向平行于磁场情况下,求出点D强度的变化关系。26解:这相当于路径不对称的中子杨氏双缝实验。设AC束方向y,

,设两条干涉路径空间程差已调节为零。但两条路径因有磁场而不对称。中子不带电,磁场对中子空间波函数不起作用,故空间波函数对D点的干涉不起作用。D点干涉强度只决定于自旋波函数的相干叠加[8]。272)光学分束器——再一种“which

way”实验设水平极化光子1从入射(“空间模”),半透镜将其相干分解,反射向+透射向;垂直极化光子2(“空间模”)从入射,半透镜将其相干分解成反射向+

透射向 。注意,反射束有 位相跳变,透射束则无。这种分解对每个光子而言都是相干分解。此处现在是双光子入射:出现两个光子同时到达,出射态中光子的空间模有重叠,必须予以对称化。正确的出射态应为(见全同性原理):作为对照,这显然类似于:双电子同时杨氏双缝——两个电子同时入射到杨氏双缝,各自均按两条缝作相干分解,但要求进行反称化。28态和一3)

作为qubit的条件,各类qubit各种类型的量子位不外乎都可以定义为一个个 态的相干叠加,即,量子位一般处于如果不仅仅把这两个基矢理解为两个能级、两种自旋取向、两种极化方式、哪条缝出来,等等状态,而且更广泛地理解为:粒子由哪条路径过来、经折射还是反射、两个出口的哪个出口出去、甚至下面“猫”的死活。凡是两种选择、两种方式、两种状态的概率幅相干叠加的情况,就都可纳入广义杨氏双缝实验思考的范畴——实则是广义两能级系统——广义的qubit

。能作为qubit的双态系统必须满足条件:除这两个能级外,其余能级在工作和测量期间影响可忽略;可施加外控进行相应幺正演化;可随意插入测量;退相干时间短于多次运行时间29。NMR,极化光子,磁场中电子,Josephson

junction,4)各类Schrodinger

Cat态——还是“which

way”实验各种“Schrodinger

Cat”态。要点:一个粒子处于两个不同态的相干叠加态上,而这两个态又要在各种类型意义上为足够“分开”,以致具有“宏观”的广义的“距离”。例如,中子干涉仪中的两路中子态。如果这只倒霉的Schrodinger

Cat是装在透明箱子里的,那将如何呢?——对放射源的连续测量导致量子Zeno效应——结果:猫会一直活着!Schrodinger

Cat’s

Paradox:其实,真正的“死”与“活”概念只是大量原子分子总体的宏观观念。由于大自由度系统因不可避免的大量相互作用而产生的大量纠缠,造成极快30所有which

way实验的总结论:无论双缝、双路、双出口、双态等等各种各类which

way实验,结果一概是:不论用何种方法,只要能够区分

“which

way”,干涉花样必定消失;只当实验方案在原理上就无法区分的情况下,干涉现象必定出现。31五,分析与结论1)无论是单粒子或复合粒子的杨氏双缝、各种“which

way”、各类Schrodinger

猫,就本质而言,都可归结为“广义杨氏双缝实验”:两份概率幅相干叠加,测量时向两者之一塌缩。

2)只当实验方案原理上无法区分哪一条路(缝、出口、死活、反射折射)——无广义的好量子数(好量子数或“正交特性”)可供识别时,干涉现象才能发生;如果能用某种办法识别得出是哪条路(缝),干涉现象必定消失——已存在可供识别的广义好量32子数使两态之间正交,导致干涉消失。如为多粒子情况,“可识别”相应于:按全同性原理应做的对(反)称化时,所出现的交换矩阵元(此时正是它们显示干涉效应)因正交性而消失。

3)这类实验中,发生干涉现象的物理根源来自微观粒子的内禀性质——波动性(波粒二象性)。4)全同性原理主张:来源不同的全同粒子可

以发生干涉!只要从初态

相互作用过程

测量塌缩态全过程中,不存在可供区分的广义好量子数。∴Dirac书“光子只能自身干涉”结论[9],以及“

”的辩护[10]都是错误的。335)全部which

way实验中塌缩(朝两路中任

一路——注意,这并不是在不同粒子之间的塌缩与关联塌缩!)过程也是违背相对论性定域因果律的超空间过程!它们一再警示:34

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论