变频技术在变速恒频异步风力发电系统中的应用_第1页
变频技术在变速恒频异步风力发电系统中的应用_第2页
变频技术在变速恒频异步风力发电系统中的应用_第3页
变频技术在变速恒频异步风力发电系统中的应用_第4页
变频技术在变速恒频异步风力发电系统中的应用_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

变频技术在变速恒频异步风力发电系统中的应用摘要:变速恒频异步风力发电技术,特别是双馈异步发电技术在风力发电中得到了广泛的应用。本文在阐述变频技术在风力发电系统应用的基础上,对变速恒频异步风力发电系统的不同的拓扑结构和控制策略进行了分析,并介绍了变速恒频双馈异步风力发电技术的研究热点以及北京清能华福风电技术有限公司的产品QHVERT-DFIG-1500B型变流器。

关键字:风力发电、变速恒频、变频技术

一、引言

中国的风能资源十分丰富,目前已经探明的风能储量约为3226GW,其中可利用风能约为253GW,主要分布在西北、华北和东北的草原和戈壁以及东部和东南沿海及岛屿上。根据统计,截至到2006年底,中国大陆地区已建成并网型风电场91座,累计运行风力发电机组3311台,总容量达259.9万kW(以完成整机吊装作为统计依据)。已经建成并网发电的风场主要分布在新疆、内蒙、广东、浙江、辽宁等16个省区。根据电监会公布的数据,截至2006年底,中国发电装机容量达到62200万kW,风力发电占全国总装机容量的0.42%。截至到2006年底,全世界总风电装机容量已经达到7390.4万kW,其中德国总装机容量2062.2万kW,位居世界第一,中国2006年风电新增装机容量仅次于美国、德国、印度和西班牙,列第五位;总装机容量列世界第六位。因此,风力发电将成为我国最具大规模开发前景的新能源之一。

风力发电系统主要有恒速恒频风力发电机系统和变速恒频风力发电机系统两大类。恒速恒频风力发电系统一般使用同步电机或者鼠笼式异步电机作为发电机,通过定桨距失速控制的风轮机使发电机的转速保持在恒定的数值继而保证发电机端输出电压的频率和幅值的恒定,其运行范围比较窄,只能在一定风速下捕获风能,发电效率较低。变速恒频风力发电系统一般采用永磁同步电机或者双馈电机作为发电机,通过变桨距控制风轮使整个系统在很大的速度范围内按照最佳的效率运行,是目前风力发电技术的发展方向。对于风机来说,其调速范围一般在同步速的50%~150%之间,如果采用普通鼠笼异步电机系统或者永磁同步电机系统,变频器的容量要求与所拖动的发电机容量相当,这是非常不经济的。双馈异步风力发电系统定子和电网直接相连接,转子和功率变换器相连接,通过变换器的功率仅仅是转差功率,这是各种传动系统中效率比较高的,该结构适合于调速范围不宽的风力发电系统,尤其是大、中容量的风力发电系统。

本文将从变速恒频异步风力系统的拓扑结构及其控制技术两个方面对变频技术在风力发电中的应用进行综述,以反映变频技术在风力发电中的发展情况。

二、变速恒频异步风力发电系统拓扑。

采用绕线异步电机作为发电机并对其转子电流进行控制,是变速恒频异步风力发电系统的主要实现形式之一。主要的拓扑结构包括交流励磁控制,转子斩波调阻以及由上述两种拓扑结构结合发展而来的混合结构。

1.交流励磁结构

交流励磁控制通过变频装置向转子提供三相滑差频率的电流进行励磁,这种方式的变频装置通常使用交交变频器,矩阵变换器或交直交变频器。

交交变频器采用晶闸管自然换流方式,工作稳定,可靠,适合作为双馈电机转子绕组的变频器电源,交交变频的最高输出频率是电网频率的1/3-1/2,在大功率低频范围有很大的优势。交交变频没有直流环节,变频效率高,主回路简单,不含直流电路及滤波部分,与电源之间无功功率处理以及有功功率回馈容易。虽然交交变频双馈系统得到了普遍的应用,但因其功率因数低,高次谐波多,输出频率低,变化范围窄,使用元件数量多使之应用受到了一定的限制。

矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但矢量控制的双馈系统结构复杂,性能受电机参数影响,受到异步电机直接转矩控制的启发,有的学者致力于研究变速恒频发电系统的直接功率控制。应用在变速恒频发电系统的直接功率控制不同于传统的直接转矩控制,它通过检测定子端的量来控制转子端的开关动作,但控制方法不使用转子PWM电压的积分,因此可以稳定工作在零频率附近,而且该方法不要位置传感器以及对参数鲁棒性强。不同于矢量控制技术,直接功率控制不需要复杂的坐标变换,而是通过控制转子磁链的幅值和相对于定子磁链位置,继而可以通过有功功率和无功功率的PI调节器跟踪参考值来控制发电机输出的有功功率和无功功率。四、其他研究热点

除了上面提到的一些双馈异步风力发电系统基本控制策略以外,双馈变速恒频异步风力发电系统还有许多研究热点包括:1.风力发电系统的软并网软解列研究软并网和软解列是目前风力发电系统的一个重要部分。一般的,当电网容量比发电机的容量大得多的时候,可以不考虑发电机并网的冲击电流,鉴于目前并网运行的发电机组已经发展到兆瓦级水平,所以必须要限制发电机在并网和解列时候的冲击电流,做到对电网无冲击或者冲击最小。2.无速度传感器技术在双馈异步风力发电系统应用的研究近年,双馈电机的无位置以及速度传感器控制成了风力发电领域的一个重要研究方向,在双馈异步风力发电系统中需要知道电机转速以及位置信息,但是速度以及位置传感器的采用提高了成本并且带来了一些不便。理论上可以通过电机的电压和电流实时计算出电机的转速,从而实现无速度传感器控制。在风力发电系统中,无传感器控制带来了以下优点:采用无传感器使发电机和逆变器之间连线消除,降低了系统成本,增强了控制系统的抗干扰性和可靠性,另外可以减少了电机的轴向尺寸,降低硬件复杂性、总成本以及维护要求。3.电网故障状态下风力发电系统不间断运行等方面并网型双馈风力发电机系统的定子绕组连接电网上,在运行过程中,各种原因引起的电网电压波动,跌落甚至短路故障会影响发电机的不间断运行。电网发生突然跌落时,发电机将产生较高的瞬时电磁转矩和电磁功率,可能造成发电机系统的机械损坏或热损坏,所以三相电网电压突然跌落时的系统持续运行控制策略的研究是目前研究热点。此外,双馈风力发电系统的频率稳定以及无功极限方面也是目前研究的热点。五、QHVERT-DFIG-1500B风力发电用变流器北京清能华福风电技术有限公司生产的适配于1.5MW级变速恒频双馈异步风力发电系统的QHVERT-DFIG-1500B型变频器使用三相背靠背电压型变流器,采用“基于双DSP的全数字化矢量控制策略”技术对双馈风力发电机转子绕组进行励磁,通过引入坐标变换,将转子交流量分解成有功分量和无功分量,并对之进行闭环控制,从而实现对发电机有功和无功的解耦控制。其主回路如图2所示:QHVERT-DFIG-1500B变速恒频双馈异步风力发电机变流器通过对双馈风力发电机的转子侧进行励磁。双馈发电机的定子侧输出与电网电压频率和相位相同,并且可根据需要进行有功和无功的独立解耦控制。QHVERT-DFIG-1500B型变流器控制双馈风力发电机实现软并网发电,减小双馈风力发电机的并网冲击电流对电机和电网造成的不利影响。QHVERT-DFIG-1500B型变流器提供多种通信接口,用户可利用这些接口方便的实现变流器与风力机系统控制器及风场远程监控系统的集成控制。图3至图5为在上海某电机厂地面实验的试验波形,图中从上到下,依次为CH1-CH6,CH1为电网电流A相,流向电网为正;CH2为定子电流A相,定子绕组流出为正;CH3为转子电流A相,变流器流出为正;CH4为整流电流A相,流入变流器为正;CH5为电网电压BC相,(CH9)CH6为定子电压BC相。从上面的介绍可以看出,我国的变速恒频双馈异步风力发电系统用变流器的产业化工作正迈着坚实的步伐大踏步的前进着,这对实现兆瓦级风力发电设备的国产化有着重要而且积极的意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论