复变函数与积分变换2011 20122习题解答八_第1页
复变函数与积分变换2011 20122习题解答八_第2页
复变函数与积分变换2011 20122习题解答八_第3页
复变函数与积分变换2011 20122习题解答八_第4页
复变函数与积分变换2011 20122习题解答八_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

f(t)cos

tt L[f(t)]23estdtestcostdt 1e2e

2f(t)cost(t)sintu(t

s sL[f(t)]cost(t)estdtsintu(t)estdtcostest 1s21s21f(t)t21L[f(t)]L[t2]L[1]2!121 f(t)1tet

s2L[f(t)]L[1]L[tet]1s

(sf(t)tcostf(t)tcostteiteit2 1 s2L[f(t)] L[teit] L[teit] 2(s (si)2 (s2s令g(t)cost,则G(s)L[g(t)] ss2

G'(s)

1(s21)2L[tcostL[tg(tGs2即Lf(t(s21)2f(t)e2tsin6t解:因为L[sin6t] ,s2

(s2)236f(t)cos2t解:f(t) 2 s2Lf(tL[]2

2L[cos2t]

2s

2s24

4)f(t)u(1et)1,1et t解:因为u(1et) 0,1etLf(t1estdt1 f(t)(t1)2etf(t(t1)2ett2et2tetet

即:u(1et) t s24sL[f(t)]L[t2et]2L[tet]L[et] 2 (s (s

s1

(s 令g(t)et 则G(s)L[g(t)]1

(s1)3 ,(s

L[et]12

s24sLf(t

e]2L[te]L[e]

(s f(t)tneat 因为L[tn] ,

L[f(t)]L[tneat]

(sa)n1g(teat,则G(sL[g(t

故Gn)

(sa)n1Lf(t

(sa)n1f(tte3tsin2t,Lf(tf(tte3tsin2t

1te3t(e2tie2ti)

1[te(2i3)tte(2i3)t],L[f(t)]1L[te(2i3)t]1L[te(2i3)t]

2

4(s23)2

(s2i

(s2i

[(s3)​

f(t)

tte3tsint

Lf(t0g(te3tsin2t,G(s)Lg(t)].g(s)L[e3te2tie2ti]1

2 2is2i s2i3 (s3) L[0g(t)dtsG(ss[(s3)24

t ' sin2tdt]L[t0g(t)dt]s[(s3)24]'所以Lf(t

2(3s212ss2[(s3)24]2F(s) ;(s2设F1(s) , F(s)

F(sF1(sF2s2 s2而f(t)L1[F(s)]2sin f(t)L1[F(s)]cos (t)2tsinicosi(t)dtsinitf(tf(t

i F(sRe(s12s11,s21F(ssF(s0.8.3 f(t)Res[F(s)est,1]Res[F(s)est,1] F(s) (s2设F1(s) , F(s)

F(sF1(sF2s2 s2而f(tf(tL1[F(s1sin f(t)

f(t)f(t)

tsinisini(t)d

[cositcos(2iitt 2ttcositisinittchtsht F(sRe(s12s11,s21F(ssF(s0.8.3

tet tete tchtf(t)Res[F(s)est,1]Res[F(s)est,1] 由(1)题知L[tsht(s21)2,故L[0tshtdt(s21)2即 ]1ttshtdt1tt(etet)dttchtsht0(s2 2 4 0f(t)sinktt解:设Lf(tF由拉氏变换的微分性质得:F'(s)L[tf(t)]L[tsinkt] s2kdsds所以Lf(tF(ss2kte3tsin

kf(t)0

dtt

解:在(1)k2得t

]arccos 2 te3tsin set

dt] (1)

dtt

L1

t

L[1]

t 故G(s)lns

即 lnst所以L1etln(s 所以

ete2tdt

1

tdtL1et lnsln(s ln 0

te2t0

1解:te2tdt 11 ;s2解:因L[sinkt] s2k故 ]1sins2 s (s1)(s

取k2得L[sin2t] .s2 (s1)(s2) s1 s2而L1 2

11 et2e2ts s21

11 所以L(s1)(s2) e ;(s

(s

F(s0.8.3 L1 Res(s1)4 (s

因为este(s1)tetet1(s1)t

t

t 故(s (s1)4(s1)3 3!(s1) 1 et t所以L

et(s1)42s3s2

2s解:设F(s) ,则F(s)在Re(s)0内具有两个单极点s s3i.除此s2F(ssF(s

2i L12s3Res[F(s)est,3i]Res[F(s)est,3i]11e3it1 2i ​

2cos3tsins (sa)(sF(s

s(sa)(sb)2s1

s2bF(sF(s8.3L1[F(s)]Res[F(s)est,a]Res[F(s)est,b] ca2eatcbt ;(s21)(s4

(a 解:设F(s) (s21)(s44)

F(s) s2

F(s) s42显然L1[F1(s)]sint 下面用留数法来求L1[F2容易求得F2

2(cos2kisin2k)

k0,1,2, s21 s31 s41用留数法求F2s)

(1i (1i L[F2(s)]

Res[F2(s)e,sn]8 ]2sintshttL1[F(s)]L1[F(s)F(s)]L1[F(s)]L1[F(s)] t 21t[costcos(2t)]shd1(1cht)cost1sintsht4 2s ;s24s 2s ,则F(s)2(s2)1 2(s s24s (s2)2 (s2)2 (s2)2因为L[sin3t] ,s2

L[cos3t] .s2所以L[e2tsin3t] L[e2tcos3t] s (s2)2 (s2)2故L1[F(s2e2tcos3t1e2tsin3​

1e2 e2 s2s2因为L11 s211e2s所以

t(t2)u(t 1e2s 2t t2 0t22s s(s1)(s2s

1

s(s1)(s 2s因为L11 L11et L11e2t 1 2s 3 所以​

s(s1)(s2)2 2 s45s2解 解 s45s2 3s2 s24 1 sin 1 1sin而 s2 所以L1 1(sint1sin2t)1sint1sin2t​

s2 (s24s5)2

s s 1 解:设F(s)

(s24s

[(s2)2

g(t)

(s21)2则L1[F(se2tg(t设F(s) , F(s) .则F(s)F(s)F s2 s2 f(t)L1[F(s)]cost f(t)L1[F(s)]sint g(t)f(t)f(t)

tcossin(t)d1

t[sintsin(2t)]d1tsin 2 所以L1[F(s1e2ttsin2s24s (s24ss24s (s 解:设F(s(s24s13)2[(s2)29]2则L1[F(se2tg(t

g(t)L1 (s29)2设F(s) F(s) .则f(t)f(t)L1[F(s)]L1[F(s)]cos3t. s2 s2 g(t)

f(t)f(t)

tcos3cos3(t)d

t 2t1tcos3t1sin 所以L1[F(s)]1tcos3t ​

s s33s26ss s3

6s4

3(s (s1)2311 1 因为L e

L(s1)23 t 1 t (t 0故由卷积定理知:L(s1)33(s1) 01 3 又因为L(s1)233

sin3 d3(1

t)e33所以L1 s 1et(22 t 3 t33 s2 s2 解:设F(s)

ln(s1)ln(s1)ln

L[f(t)]FL[tf(t)]F'(s) 故tf(tetet

1

2s e 也即f(t1u(t

[F(s)] u(t)

t

t 所以01u(t)d0dtmtn(mn为正整数

ndm

tmn (t)d0(t)m1m1(t tm1(t)n1dm1

00m1d(t00tet00

tmn1(t)n(n1)(m (mn t(t)dm(m (mn1)(m tmn1 m!n! tmn1.(m1) (mn1) (mn1)!解:tetd0sintcost

t0

et

tetdt0

tett解:tsincos(t)d1t[sintsin(2t)]d1tsint1cos(2t)t1tsin 2 u(ta)f(t a解:因为u(a) a 当0at0u(af(t)daf(t)d t故当at0u(af(t)d 0a即u(taf(t(ta)f(t)

a 解:设au,则0(af(t)da(uf(tu 所以当ta0即at当ta a0即0at时,由函数的筛选性质得 a(u)f(tua)du(u)f(tua)duf(tFL[tf(t)dt] 证明:因为

[F(s)]f(t

L1F(st1f()dtf(t t也即t

f(t)dt]

F

L1

tsin (a (s2a2)2 证明:因为L1 cos L1 1sin L1

cosasina(t)d [sinatsina(2tt tt(s2a2)2t

a 2atsinat

1cosa(2t)t

y''4y'3yet y(0)y'(0)解:设LyY(s).s2Y(s)sy(0)y'(0)4sY(s)4y(0)3Y(s)s26s

1代入y(0)y'(0)1,得:Y(s(s1)2(s3 s26s s26s yL1[Y(s)]Res(s1)2(s1[(72t)et3e3t4

est,1Res (s1)2(s

est,y'''3y''3y'y y''(0)y'(0)1,y(0)解:设L[y]Y s3Y(s)s2y(0)sy'(0)y''(0)3[s2Y(s)sy(0)y'(0)]3[sY(s)y(0)]Y(s)1sY(s2s1s(syL1[Y(s)]Res[Y(s)est,0]Res[Y(s)est,1]1ety''2y'2y2etcost y(0)y'(0)解:设L[y]Y s2Y(s)sy(0)y'(0)2[sY(s)y(0)]2Y(s) s (s1)2s2Y(s)2sY(s)2Y(s)2 s ,(s1)2即:Y(s)2 [(s1)21 e

e因为L(s1)2

(s1)2

sint ttyL1[Y(s)]

20

cosetsin(t)dtetsinty''3y'2yu(t1) y(0)0,y'(0)1解:设L[y]Y s2Y(s)sy(0)y'(0)3[sY(s)y(0)]2Y(s)L[u(t Y(s)L[u(t1)] .因 s23s

s23s s

s23s所 L1 ete2t L1L[u(t1)] s3s2

tu(1)[e(t)e2(t)]d0

t1u()[e(t1)e2(t1) t1[e(t1)e2(t1)]d11e2(t1)e(t1)u(t yL1[Y(s)]ete2t11e2(t1)e(t1)u(t1) y(4)y'''cost y(0)y'(0)y'''(0)0,y''(0)2解:设L[y]Y s4Y(s)s3y(0)s2y'(0)sy''(0)y'''(0)s3Y(s)s2y(0)sy'(0)y''(0)

,s22s32s23s Y(s)s3(s1)(s21)s2(s1)(s21)s3由例8.16知:L

tsint,又因为L11et.s2(s2(s21) t(sin)e(t)d

d

s2(s1)(s21)

因为L12t2

t1etcostsin. .y

e costsin

L[Y(s)]

t1 ​

x'xyety'3x2y2et x(0)y(0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论