沪科九年级上学期全册教案_第1页
沪科九年级上学期全册教案_第2页
沪科九年级上学期全册教案_第3页
沪科九年级上学期全册教案_第4页
沪科九年级上学期全册教案_第5页
已阅读5页,还剩109页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.1二次函数教学目标【知识与技能】以实际问题为例理解二次函数的概念,并掌握二次函数关系式的特点.【过程与方法】能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围.【情感、态度与价值观】联系学生已有知识,让学生积极参与函数的学习过程,使学生体会函数的思想.重点难点【教学重点】二次函数的概念.【教学难点】能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围.课前准备课件等。教学过程一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的概念【类型一】二次函数的识别例1下列函数哪些是二次函数?(1)y=2-x2;(2)y=eq\f(1,x2-1);(3)y=2x(1+4x);(4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式不符合二次函数的定义,故y=eq\f(1,x2-1)不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式最高次数为2,且函数关系式中二次项系数不等于0.【类型二】根据二次函数的定义求待定字母的值例2如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解.注意易错点为忽视k+2≠0.解:根据题意知eq\b\lc\{(\a\vs4\al\co1(k2-2=2,,k+2≠0,))eq\b\lc\{(\a\vs4\al\co1(k=±2,,k≠-2,))∴k=2.方法总结:紧扣定义中的两个特征:①a≠0;②自变量最高次数为2的二次三项式ax2+bx+c.【类型三】与二次函数系数有关的计算例3已知一个二次函数,当x=0时,y=0;当x=2时,y=eq\f(1,2);当x=-1时,y=eq\f(1,8).求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y=ax2+bx+c(a≠0).把x=0,y=0;x=2,y=eq\f(1,2);x=-1,y=eq\f(1,8)分别代入函数表达式,得eq\b\lc\{(\a\vs4\al\co1(c=0,,4a+2b+c=\f(1,2),,a-b+c=\f(1,8),))解得eq\b\lc\{(\a\vs4\al\co1(a=\f(1,8),,b=0,,c=0.))所以这个二次函数的表达式为y=eq\f(1,8)x2.所以a+b+c=eq\f(1,8)+0+0=eq\f(1,8),即这个二次函数中各项系数的和为eq\f(1,8).方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y=ax2+bx+c(a≠0).解决这类问题要根据x,y的对应值,列出关于字母a,b,c的方程(组),然后解方程(组),即可求得a,b,c的值.探究点二:建立二次函数模型例4某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x元、每星期售出商品的利润为y元.(1)请写出y与x的函数表达式,并求出自变量x的取值范围;(2)当每件商品降价15元时,每星期售出商品的利润为多少元?解析:根据题意可以知道:实际每件商品的利润为(60-x-40),每星期售出商品的数量为(300+20x),则每星期售出商品的利润为y=(60-x-40)(300+20x)元,化简,注意要求出自变量x的取值范围.解:(1)由题意,得:y=(60-x-40)(300+20x)=(20-x)(300+20x)=-20x2+100x+6000,自变量x的取值范围为0≤x≤20;(2)把x=15代入y=-20x2+100x+6000得y=3000(元),即当每件商品降价15元时,每星期售出商品的利润为3000元.方法总结:销售利润=单件商品利润×销售数量;单件商品利润=售价-进价.三、巩固练习P.3练习1、2P.习题1、2四、课堂小结本节课主要学习了以下内容:1.二次函数的概念:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数.2.能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围.五、课外作业P.4习题3、4、5、6基础训练六、板书设计eq\a\vs4\al(\x(二次函数)\b\lc\{(\a\vs4\al\co1(1.概念:一般地,表达式形如y=ax2+bx+c,(a,b,c是常数,且a≠0)的函数叫做,x的二次函数,其中x是自变量,2.二次函数的识别,3.确定二次函数中待定字母的取值(范围),4.求函数值,5.建立二次函数模型,6.确定自变量的取值范围)))教学反思21.2.1二次函数y=ax2的图象和性质教学目标【知识与能力】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感态度价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.教学重难点【教学重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。【教学难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。课前准备课件等。教学过程一、问题引入1.一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线.)2.画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).3.二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)二、新课教授【例1】画出二次函数y=x2的图象.解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.x…-3-2-10123…y…9410149…(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.【例2】在同一直角坐标系中,画出函数y=x2及y=2x2的图象.解:分别填表,再画出它们的图象.x…-4-3-2-101234…y=x2…84.520.500.524.58…x…-2-1.5-1-0.500.511.52…y=2x2…84.520.500.524.58…思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。师生活动:学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,若发现问题,及时点拨.学生汇报探究的思路和结果,教师评价,给出图形.抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?师生活动:学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,发现问题,及时点拨.学生汇报探究思路和结果,教师评价,给出图形.抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.教师引导学生小结(知识点、规律和方法).一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a<0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.从二次函数y=ax2的图象可以看出:如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.三、巩固练习1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.

【答案】下(0,-4)x=00大-42.当m≠时,y=(m-1)x2-3m是关于x的二次函数.

【答案】13.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.

【答案】-3或3-124.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.

【答案】125.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.

【答案】y=-2x26.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()A.y=x2B.y=x2C.y=-2x2 D.y=-x2【答案】C7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()A.y=x2 B.y=4x2C.y=-2x2 D.无法确定【答案】A8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()A.两条抛物线关于x轴对称B.两条抛物线关于原点对称C.两条抛物线关于y轴对称D.两条抛物线的交点为原点【答案】C四、课堂小结1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a<0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.五、课外作业课本P.练习1、2、3、4、5六、板书设计eq\a\vs4\al(二次函数y=ax2的图象和性质)eq\b\lc\{(\a\vs4\al\co1(图象\b\lc\{(\a\vs4\al\co1(画y=ax2图象,y=ax2图象的形状、特点)),性质\b\lc\{(\a\vs4\al\co1(a>0\b\lc\{(\a\vs4\al\co1(当x<0时,函数y随x的增大而减小,当x>0时,函数y随x的增大而增大,当x=0时,函数取得最小值,y最小值=0,,且y没有最大值,即y≥0)),a<0\b\lc\{(\a\vs4\al\co1(当x<0时,函数y随x的增大而增大,当x>0时,函数y随x的增大而减小,当x=0时,函数取得最大值,y最大值=0,,且y没有最小值,即y≤0))))))教学反思21.2.2二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+k的图象和性质教学目标【知识与能力】1、能利用描点法正确作出函数y=ax2+b的图象。2、经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系.【过程与方法】使学生经历探索二次函数y=ax2+b的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感态度价值观】使学生经历探索二次函数y=ax2+b的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.教学重难点【教学重点】会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。【教学难点】正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。课前准备课件等。教学过程一、提出问题1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?(画出函数y=2x2和函数y=2x2的图象,并加以比较)问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?解:(1)列表:x…-3-2-10123…y=x2…188202818…y=x2+1…1993l3919…(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。问题4:函数y=2x2+1和y=2x2的图象有什么联系?由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。问题5:现在你能回答前面提出的第2个问题了吗?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?完成填空:当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.以上就是函数y=2x2+1的性质。三、做一做问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?教学要点让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?教学要点1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=-2。问题9:在同一直角坐标系中。函数y=-eq\f(1,3)x2+2图象与函数y=-eq\f(1,3)x2的图象有什么关系?要求学生能够画出函数y=-eq\f(1,3)x2与函数y=-eq\f(1,3)x2+2的草图,由草图观察得出结论:函数y=-eq\f(1,3)1/3x2+2的图象与函数y=-eq\f(1,3)x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-eq\f(1,3)x2+2的图象可以看成将函数y=-eq\f(1,3)x2的图象向上平移两个单位得到的。问题10:你能说出函数y=-eq\f(1,3)x2+2的图象的开口方向、对称轴和顶点坐标吗?[函数y=-eq\f(1,3)x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]问题11:这个函数图象有哪些性质?让学生观察函数y=-eq\f(1,3)x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。四、巩固练习:练习1、2、3。五、课堂小结1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?六、布置作业七、板书设计eq\a\vs4\al(二次函数,y=ax2+k,的图象和,性质)eq\b\lc\{(\a\vs4\al\co1(1.顶点坐标、对称轴、开口方向,2.抛物线的增减性,3.平移规律,4.与一次函数、几何图形综合))教学反思21.2.2二次函数y=ax2+bx+c的图象和性质第2课时二次函数y=a(x+h)²的图象和性质教学目标【知识与能力】1.能利用描点法画出二次函数y=a(x+h)2的图象。2.经历二次函数y=a(x+h)2性质探究的过程,理解函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的关系.【过程与方法】使学生经历探索二次函数y=a(x+h)2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感态度价值观】使学生经历探索二次函数y=a(x+h)2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.教学重难点【教学重点】会用描点法画出二次函数y=a(x+h)2的图象,理解二次函数y=a(x+h)2的性质,理解二次函数y=a(+h)2的图象与二次函数y=ax2的图象的关系。【教学难点】理解二次函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的相互关系。课前准备课件、教具等。教学过程一、提出问题1.在同一直角坐标系内,画出二次函数y=-eq\f(1,2)x2,y=-eq\f(1,2)x2-1的图象,并回答:(1)两条抛物线的位置关系、对称轴、开口方向和顶点坐标。(2)说出它们所具有的公共性质。2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题?(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?2.让学生在直角坐标系中画出图来:3.教师巡视、指导。问题3:现在你能回答前面提出的问题吗?2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?三、做一做问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?教学要点1.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?教学要点让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。问题7:在同一直角坐标系中,函数y=-eq\f(1,3)(x+2)2图象与函数y=-eq\f(1,3)x2的图象有何关系?(函数y=-eq\f(1,3)(x+2)2的图象可以看作是将函数y=-eq\f(1,3)x2的图象向左平移2个单位得到的。)问题8:你能说出函数y=-eq\f(1,3)(x+2)2图象的开口方向、对称轴和顶点坐标吗?(函数y=-eq\f(1,3)(x十2)2的图象开口向下,对称轴是直线x=-2,顶点坐标是(-2,0))。问题9:你能得到函数y=eq\f(1,3)(x+2)2的性质吗?教学要点:让学生讨论、交流,发表意见,归结为:当x<-2时,函数值y随x的增大而增大;当x>-2时,函数值y随工的增大而减小;当x=-2时,函数取得最大值,最大值y=0。四、课堂练习:练习1、2、3。五、课堂小结:1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象有什么联系和区别?2.你能说出函数y=a(x-h)2图象的性质吗?六、布置作业七、板书设计教学反思21.2.2二次函数y=ax2+bx+c的图象和性质第3课时二次函数y=a(x+h)²+k的图象和性质教学目标【知识与能力】1.理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系。2.会确定函数y=a(x+h)2+k的图象的开口方向、对称轴和顶点坐标。3.经历函数y=a(x+h)2+k性质的探索过程,理解函数y=a(x+h)2+k的性质.【过程与方法】使学生经历探索二次函数y=a(x+h)2+k的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感态度价值观】使学生经历探索二次函数y=a(x+h)2+k的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.教学重难点【教学重点】确定函数y=a(x+h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x+h)2+k的性质。【教学难点】正确理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x+h)2+k的性质。课前准备课件、教具等。教学过程一、提出问题1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?二、试一试问题1:你能填写下表吗?y=2x2的图象向右平移1个单位y=2(x-1)2向上平移1个单位y=2(x-1)2+1的图象开口方向向上对称轴y轴顶点(0,0)问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?问题3:你能发现函数y=2(x-1)2+1有哪些性质?对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平移1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。三、做一做问题4:在图3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?问题5:你能说出函数y=-eq\f(1,3)(x-1)2+2的图象与函数y=-eq\f(1,3)x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?(函数y=-eq\f(1,3)(x-1)2+2的图象可以看成是将函数y=-eq\f(1,3)x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)四、课堂练习:练习1五、课堂小结1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?六、布置作业:1.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;(4)试讨沦函数y=6(x+3)2-3的性质;3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?七、板书设计教学反思21.2.2二次函数y=ax2+bx+c的图象和性质第4课时二次函数y=ax2+bx+c的图象和性质教学目标【知识与能力】1.掌握用描点法画出函数y=ax2+bx+c的图象。2.掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3.经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质.【过程与方法】使学生经历探索二次函数y=ax2+bx+c的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感态度价值观】使学生经历探索二次函数y=ax2+bx+c的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.教学重难点【教学重点】用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标。【教学难点】理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴、顶点坐标分别是x=-eq\f(b,2a)、(-eq\f(b,2a),eq\f(4ac-b2,4a))。课前准备课件、教具等。教学过程一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y=-4(x-2)2+1具有哪些性质?(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)4.不画出图象,你能直接说出函数y=-eq\f(1,2)x2+x-eq\f(5,2)的图象的开口方向、对称轴和顶点坐标吗?5.你能画出函数y=-eq\f(1,2)x2+x-eq\f(5,2)的图象,并说明这个函数具有哪些性质吗?二、解决问题由以上第4个问题的解决,我们已经知道函数y=-eq\f(1,2)x2+x-eq\f(5,2)的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-eq\f(1,2)x2+x-eq\f(5,2)的图象,进而观察得到这个函数的性质。解:(1)列表:在x的取值范围内列出函数对应值表;x…-2-101234…y…-6eq\f(1,2)-4-2eq\f(1,2)-2-2eq\f(1,2)-4-6eq\f(1,2)…(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑的曲线顺次连接各点,得到函数y=-eq\f(1,2)x2+x-eq\f(5,2)的图象。说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=-2三、做一做1.请你按照上面的方法,画出函数y=eq\f(1,2)x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?教学要点(1)在学生画函数图象的同时,教师巡视、指导;(2)叫一位或两位同学板演,学生自纠,教师点评。2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?教学要点(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;y=ax2+bx+c=a(x2+eq\f(b,a)x)+c=a[x2+eq\f(b,a)x+(eq\f(b,2a))2-(eq\f(b,2a))2]+c=a[x2+eq\f(b,a)x+(eq\f(b,2a))2]+c-eq\f(b2,4a)=a(x+eq\f(b,2a))2+eq\f(4ac-b2,4a)当a>0时,开口向上,当a<0时,开口向下。对称轴是x=-b/2a,顶点坐标是(-eq\f(b,2a),eq\f(4ac-b2,4a))四、课堂练习:练习题。五、小结:通过本节课的学习,你学到了什么知识?有何体会?六、作业:1.填空:(1)抛物线y=x2-2x+2的顶点坐标是_______;(2)抛物线y=2x2-2x-eq\f(5,2)的开口_______,对称轴是_______;(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;(4)抛物线y=-eq\f(1,2)x2+2x+4的对称轴是_______;(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。3.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=3x2+2x; (2)y=-x2-2x(3)y=-2x2+8x-8 (4)y=eq\f(1,2)x2-4x+34.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质七、板书设计:eq\a\vs4\al(二次函数,y=ax2+bx+c,的图象和性质)eq\b\lc\{(\a\vs4\al\co1(1.图象与系数之间的关系,2.抛物线的性质,3.抛物线的平移与确定,4.与一次函数、几何图形综合))教学反思21.2.3二次函数表达式的确定教学目标【知识与能力】1、掌握二次函数表达式的表达方式。2、会用待定系数法求二次函数的表达式。3、学会利用二次函数解决实际问题。【过程与方法】能根据二次函数的图像及性质解决生活中的实际问题【情感态度与价值观】通过数学活动,体会实际生活与数学的密切联系,感受数学带给人们的作用,激发学习热情,培养学习兴趣。教学重难点【教学重点】掌握用待定系数法求二次函数的解析式。【教学难点】利用待定系数法解决相关问题。课前准备课件等。教学过程一、情境导入某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时喷水水平距离为eq\f(1,2)米,你能写出如图所示的平面直角坐标系中抛物线水柱的解析式吗?二、合作探究探究点:用待定系数法求二次函数解析式【类型一】用一般式确定二次函数解析式例1已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的关系式.解析:由于题目给出的是抛物线上任意三点,可设一般式y=ax2+bx+c(a≠0).解:设这个二次函数的关系式为y=ax2+bx+c(a≠0).依题意得eq\b\lc\{(\a\vs4\al\co1(a-b+c=-5,,c=-4,,a+b+c=1,))解得eq\b\lc\{(\a\vs4\al\co1(a=2,,b=3,,c=-4.))∴这个二次函数的关系式为y=2x2+3x-4.方法总结:当题目给出函数图象上的三个点时,设一般式y=ax2+bx+c,转化成一个三元一次方程组,以求得a,b,c的值.【类型二】用顶点式确定二次函数解析式例2已知二次函数的图象顶点坐标是(-2,3),且过点(-1,5),求这个二次函数的关系式.解:设二次函数关系式为y=a(x+h)2+k,∵图象顶点是(-2,3),∴h=2,k=3.依题意得5=a(-1+2)2+3,解得a=2.∴二次函数的关系式为y=2(x+2)2+3=2x2+8x+11.方法总结:若已知抛物线的顶点或对称轴、极值,则设y=a(x+h)2+k.顶点坐标为(-h,k),对称轴为x=-h,极值为当x=-h时,y极值=k.【类型三】用交点式确定二次函数解析式例3已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的解析式.解析:由于已知图象与x轴的两个交点,所以可设y=a(x-x1)(x-x2)求解.解:因为点A(-1,0),B(1,0)是图象与x轴的交点,所以设二次函数的解析式为y=a(x+1)(x-1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a=-1,所以所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1.方法总结:此题也可设y=a(x+h)2+k,因为与x轴交于(-1,0),(1,0),故对称轴为y轴.三、巩固练习四、课堂小结想一想,你的收获是什么?困惑有哪些?说出来,与同学们分享。五、作业布置六、板书设计二次函数表达式的确定eq\b\lc\{(\a\vs4\al\co1(设y=ax2+bx+c,设y=a(x+h)2+k,设y=a(x-x1)(x-x2)))教学反思21.3二次函数与一元二次方程第1课时二次函数与一元二次方程教学目标【知识与能力】掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系,会用二次函数的图象求一元二次方程的近似解以及一元二次不等式的解集。【过程与方法】经历探究二次函数与一元二次方程、一元二次不等式关系的过程,体会函数、方程、不等式之间的联系。【情感态度价值观】进一步培养学生的综合解题能力,掌握解决问题的方法,培养探究精神。教学重难点【教学重点】用函数图象求一元二次方程的近似解及一元二次不等式的解集。【教学难点】用数形结合的思想解方程及不等式。课前准备课件等。教学过程一、创设情境,导入新知师:任意一次函数的图象与x轴有几个交点?生甲:一个.生乙:不对,当直线与x轴平行时,没有交点.生丙:还有一种情况,当直线与x轴重合时,有无数个交点.师:同学们考虑得很周到!当一次函数的图象与x轴有1个交点时,你能求出它与x轴交点的坐标吗?比如一次函数y=2x-3,它的图象与x轴交点的坐标是多少?学生计算后回答.二、共同探究,获取新知师:你猜想一下,二次函数的图象与x轴可能会有几个交点?我们可以借助什么来研究?学生思考.生:借助二次函数的图象.师:对.教师多媒体课件出示:二次函数y=x2+3x+2的图象如图所示,根据图象回答问题:1.它与x轴有公共点吗?如果有,公共点的横坐标是多少?2.当x取公共点的横坐标时,函数的值是多少?3.由此你能求出方程x2+3x+2=0的根吗?4.方程x2+3x+2=0的解与交点的横坐标有什么关系?师:请同学们先画出函数图象,然后思考下面几个问题.学生作图,教师巡视指导.教师出示图象:学生观察图象后回答.生:这个函数的图象与x轴有公共点,公共点的横坐标分别是-2和-1.这时函数值都为0,所以方程x2+3x+2=0的根为-2和-1.方程x2+3x+2=0的解与交点的横坐标是一样的.师:同学们回答得很好!你能归纳出函数y=ax2+bx+c的图象与x轴交点个数的其他情况吗?交点的个数与方程ax2+bx+c=0的根的个数有何关系呢?学生思考,交流讨论.生:函数y=ax2+bx+c的图象与x轴交点的个数与方程ax2+bx+c=0根的个数一样,所以也有三种情况:令Δ=b2-4ac,当Δ>0时,函数图象与x轴有两个交点,方程有两个根;当Δ=0时,函数图象与x轴有一个交点,方程有两个相等的根;当Δ<0时,函数图象与x轴没有交点,方程无解.师:同学们回答得很好!所以我们有了求一元二次方程根的另一种方法,画出二次函数的图象,然后怎么确定方程的解呢?生:二次函数的图象与x轴交点的横坐标就是一元二次方程的解.三、例题讲解【例】用图象法求一元二次方程x2+2x-1=0的近似解(精确到0.1).解:画出函数y=x2+2x-1的图象,如图.由图象可知,方程有两个实数根,一个在-3和-2之间,另一个在0和1之间.先求位于-3和-2之间的根.由图象可估计这个根是-2.5或-2.4,利用计算器进行探索,见下表:x…-2.5-2.4…y…0.25-0.04…观察上表可以发现,当x分别取-2.5和-2.4时,对应的y由正变负,可见在-2.5与-2.4之间肯定有一个x使y=0,即有方程x2+2x-1=0的一个根.题目只要求精确到0.1,这时取x=-2.5或x=-2.4作为根都符合要求.但当x=-2.4时,y=-0.04比y=0.25(x=-2.5)更接近0,故选x=-2.4.同理,可求出方程x2+2x-1=0在0和1之间精确到0.1的另一个根.方程x2+2x-1=0的近似解还可以这样求:分别画出函数y=x2和y=-2x+1的图象,如图,它们的交点A、B的横坐标就是方程x2+2x-1=0的根.如有条件,可以在计算机上用《几何画板》处理.四、练习新知师:我这有几个习题,现在让我们一起来解决它们.1.已知抛物线y=ax2+bx+c的图象与x轴的交点坐标分别为(1,0)、(-5,0),那么关于x的一元二次方程ax2+bx+c=0的两个根分别是.

【答案】x1=1,x2=-52.判断下列二次函数的图象与x轴有无交点.若有,求出交点的坐标;若没有,请说明理由.(1)y=2x2-5x+3;(2)y=x2+3x+5;(3)y=3x2-7x+8; (4)y=x2+x-12.【答案】(1)有交点,交点坐标为(1,0)、(,0);(2)无交点,Δ=b2-4ac=32-4×1×5=-11<0;(3)无交点,Δ=b2-4ac=(-7)2-4×3×8=-47<0;(4)有交点,交点坐标为(4,0)、(-6,0).3.已知二次函数y=kx2-3x-2的图象与x轴有两个交点,求k的取值范围.【答案】根据题意,得9+8k>0且k≠0解得k>-9/8且k≠0.五、继续探究,层层推进师:我们前面学习了一次函数与一元一次方程、一元一次不等式之间的关系,上面讨论了二次函数与一元二次方程的关系,下面我们讨论二次函数与一元二次不等式的关系.请同学们看课本第30页的图21~20.学生看图.师:我们可以清楚地看到二次函数y=x2+3x+2的图象被x轴分成三部分:一部分与x轴相交,一部分在x轴上方,一部分在x轴下方.在x轴上方或下方的意义是什么?生1:在x轴上方时,y>0,也就是x2+3x+2>0,所以图象在x轴上方的x的取值范围就是不等式x2+3x+2>0的解集.生2:在x轴下方时,y<0,也就是x2+3x+2<0,所以图象在x轴下方的x的取值范围就是不等式x2+3x+2<0的解集.师:同学们很聪明!你现在就根据这个来完成课本第33页练习的1、2.学生做题,教师巡视指导,完成后集体订正.六、课堂小结师:本节课你学习了什么内容?有什么收获?学生回答.师:你还有什么不明白的地方吗?学生提问,教师解答.七、布置作业八、板书设计教学反思21.3二次函数与一元二次方程第2课时二次函数与一元二次不等式教学目标【知识与能力】1.通过探索,理解二次函数与一元二次不等式之间的联系;2.会用二次函数的图象求出一元二次不等式的解集。【过程与方法】经历探究二次函数与一元二次方程、一元二次不等式关系的过程,体会函数、方程、不等式之间的联系。【情感态度价值观】进一步培养学生的综合解题能力,掌握解决问题的方法,培养探究精神。教学重难点【教学重点】二次函数与一元二次不等式之间的联系。【教学难点】用二次函数的图象求出一元二次不等式的解集。课前准备课件等。教学过程一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到关于x的不等式ax2+bx+c<0的解集吗?请你直接写出来.二、合作探究探究点一:二次函数与一元二次不等式的关系【类型一】利用抛物线解一元二次不等式例1抛物线y=ax2+bx+c(a>0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当x<-3或x>1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是x<-3或x>1.故选D.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集,所以利用二次函数的图象,可以直观地求得一元二次不等式ax2+bx+c>0或ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围例2二次函数y=ax2+bx+c的图象如图所示,则函数值y在x轴下方时,x的取值范围是()A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:由二次函数图象可知,当-1<x<3时,函数图象在x轴的下方.故选C.方法总结:利用数形结合思想来求解.当y=0时,对应x的值为x1=-1,x2=3,当y>0时,看抛物线在x轴上方的部分,x的取值范围是x<-1或x>3;当y<0时,看抛物线在x轴下方的部分,x的取值范围是-1<x<3.例3已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的关系式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.解析:用待定系数法将已知两点的坐标代入二次函数关系式,即可求出b,c的值,然后通过解一元二次方程求抛物线与x轴的另一个交点坐标,由图象法求得函数值y为正数时,自变量x的取值范围.解:(1)由题意得eq\b\lc\{(\a\vs4\al\co1(-1-b+c=0,,c=3,))解得eq\b\lc\{(\a\vs4\al\co1(b=2,,c=3.))故所求关系式为y=-x2+2x+3;(2)令y=0,得-x2+2x+3=0,解得x1=-1,x2=3,∴抛物线与x轴的另一个交点坐标为(3,0).∴由图象可知函数值y为正数时,自变量x的取值范围是-1<x<3.探究点二:抛物线y=ax2+bx+c的位置与b2-4ac的关系例4求证:无论a是什么实数,二次函数y=x2+ax+a-2的图象都与x轴有两个不同的交点.解析:抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标就是方程ax2+bx+c=0(a≠0)的两根,于是问题就转化成证明Δ>0的问题.证明:由题意知Δ=a2-4(a-2)=a2-4a+8=(a-2)2+4.∵无论a取什么实数,(a-2)2≥0,∴(a-2)2+4>0,即Δ>0.∴无论a是什么实数,二次函数y=x2+ax+a-2的图象都与x轴有两个不同的交点.三、巩固练习四、课堂小结五、作业布置六、板书设计eq\a\vs4\al(二次函数与一元,二次不等式)eq\b\lc\{(\a\vs4\al\co1(1.确定抛物线对应的自变量的取,值范围,2.利用抛物线解一元二次不等式))教学反思21.4二次函数的应用第1课时二次函数在面积最值问题中的应用教学目标【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.教学重难点【教学重点】利用二次函数求实际问题的最值。【教学难点】对实际问题中数量关系的分析。课前准备课件等。教学过程一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.当x为何值时,S有最大值?并求出最大值.二、合作探究探究点:利用二次函数求最大面积【类型一】利用二次函数求最大面积例1小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x,则另一边长为eq\f(60-2x,2),从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S=eq\f(60-2x,2)·x=-x2+30x.自变量x的取值范围是0<x<30;(2)S=-x2+30x=-(x-15)2+225,因为a=-1<0,所以S有最大值,即当x=15(米)时,S最大值是225(平方米).方法总结:二次函数与日常生活中的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件例2用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)判断能否围成,其实就是利用根的判别式判断一元二次方程是否有实数根,也可用配方法判断.解:(1)y=x(16-x)=-x2+16x(0<x<16);(2)当y=60时,-x2+16x=60,解得x1=10,x2=6.所以当x=10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y=70时,-x2+16x=70,整理,得x2-16x+70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:当y=70时,-x2+16x=70,整理,得x2-16x+70=0,配方,得(x-8)2=-6,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】利用二次函数确定最大面积的条件例3现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式,并写出自变量的取值范围;(2)当x是多少时,种植菊花的面积最大?最大面积是多少?解析:这是花草种植面积的最优化问题,先根据矩形的面积公式列出y与x之间的函数关系式,再利用配方法或公式法求得最大值.解:(1)由题意知,B场地宽为(30-x)m,∴y=x(30-x)=-x2+30x,自变量x的取值范围为0<x<30;(2)y=-x2+30x=-(x-15)2+225,当x=15m时,种植菊花的面积最大,最大面积为225m2.【类型四】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.解:(1)M(12,0),P(6,6);(2)设这条抛物线的函数关系式为y=a(x-6)2+6,因为抛物线过O(0,0),所以a(0-6)2+6=0,解得a=-eq\f(1,6),所以这条抛物线的函数关系式为y=-eq\f(1,6)(x-6)2+6,即y=-eq\f(1,6)x2+2x;(3)设OB=m,则点A的坐标为(m,-eq\f(1,6)m2+2m),所以AB=DC=-eq\f(1,6)m2+2m.根据抛物线的轴对称,可得OB=CM=m,所以BC=12-2m,即AD=12-2m,所以l=AB+AD+DC=-eq\f(1,6)m2+2m+12-2m-eq\f(1,6)m2+2m=-eq\f(1,3)m2+2m+12=-eq\f(1,3)(m-3)2+15.所以当m=3,即OB=3米时,三根木杆长度之和l的最大值为15米.三、巩固练习四、课堂小结五、作业布置六、板书设计eq\a\vs4\al(图形面积,最大值)eq\b\lc\{(\a\vs4\al\co1(1.利用二次函数求最大面积,2.利用二次函数确定最大面积的条件,3.利用函数判断面积取值成立的条件,4.最大面积方案设计))教学反思21.4二次函数的应用第2课时建立二次函数模型解决实际问题教学目标【知识与技能】1.经历探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.【过程与方法】经历优化问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.【情感态度】体会数学与人类社会的密切联系,了解数学的价值,增加对数学的理解和学好数学的信心.教学重难点【教学重点】根据具体的情境建立适当的平面直角坐标系,将有关线段的长度转化为坐标系中点的坐标,求出函数的解析式,从而解决实际问题。【教学难点】建立适当的平面直角坐标系,并用简便的方法求出二次函数解析式。课前准备课件等。教学过程一、情境导入跳绳是同学们非常喜欢的一种体育活动,在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图,正在甩绳的甲、乙两名学生拿绳的手间距为4米,设拿绳的手此时距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米和2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,根据以上信息你能知道学生丁的身高吗?要解决这个问题,同学们分析一下,我们会利用哪些知识来解决?二、合作探究探究点一:二次函数在建筑问题中的应用例1如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.解析:如图,建立直角坐标系,设这条抛物线为y=ax2,把点(2,-2)代入,得-2=a×22,a=-eq\f(1,2),∴y=-eq\f(1,2)x2,当y=-3时,-eq\f(1,2)x2=-3,x=±eq\r(6).故答案为2eq\r(6).方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数解析式解决实际问题.探究点二:二次函数在体育活动中的应用【类型一】运动轨迹问题例2某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面eq\f(20,9)米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x=1时函数y的值与最大摸高3.1米的大小.解:(1)由条件可得到出手点、最高点和篮圈的坐标分别为A(0,eq\f(20,9)),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系式为y=a(x+h)2+k,将点A、B的坐标代入,可得y=-eq\f(1,9)(x-4)2+4.将点C的坐标代入上式,得左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.【类型二】落点问题例3如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米(取4eq\r(3)=7)?(3)运动员乙要抢到第二个落点D,他应再向前跑多少米(取2eq\r(6)=5)?解析:要求足球开始飞出到第一次落地时,抛物线的表达式,则需要根据已知条件确定点A和顶点M的坐标,因为OA=1,OB=6,BM=4,所以点A的坐标为(0,1),顶点M的坐标是(6,4).根据顶点式可求得抛物线关系式.因为点C在x轴上,所以要求OC的长,只要把点C的纵坐标y=0代入函数关系式,通过解方程求得OC的长.要计算运动员乙要抢到第二个落点D,他应再向前跑多少米,实际就是求DB的长.求解的方法有多种.解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-eq\f(1,12).所以函数表达式为y=-eq\f(1,12)(x-6)2+4或y=-eq\f(1,12)x2+x+1;(2)令y=0,则-eq\f(1,12)(x-6)2+4=0,所以(x-6)2=48,所以x1=4eq\r(3)+6≈13,x2=-4eq\r(3)+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-eq\f(1,12)(x-6)2+4,解得x1=6-2eq\r(6),x2=6+2eq\r(6),所以CD=|x1-x2|=4eq\r(6)≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.三、巩固练习四、课堂小结五、作业布置六、板书设计建立二次函数模型eq\b\lc\{(\a\vs4\al\co1(1.运动轨迹问题,2.落点问题,3.涵洞问题))教学反思21.5反比例函数第1课时反比例函数教学目标【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.教学重难点【教学重点】理解和领会反比例函数的概念。【教学难点】根据条件求反比例函数的表达式。课前准备课件等。教学过程一、情境导入你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?二、合作探究探究点一:反比例函数的概念【类型一】辨别反比例函数例1在下列反比例函数表达式中,哪些函数表示y是x的反比例函数?(1)y=eq\f(x,5);(2)y=eq\f(3,x);(3)y=eq\f(2,3x);(4)xy=eq\f(1,2);(5)y=eq\f(2,x-1);(6)y=-eq\f(\r(2),x);(7)y=2x-1;(8)y=eq\f(a-5,x)(a≠5,a是常数).解析:根据反比例函数的概念,必须是形如y=eq\f(k,x)(k是常数,k≠0)的函数,才是反比例函数.如(2)(3)(6)(8)均符合这一概念的要求,所以它们都是反比例函数.但还要注意y=eq\f(k,x)(k是常数,k≠0)的一些常见的变化形式,如xy=k,y=kx-1等,所以(4)(7)也是反比例函数.在(5)中,y是(x-1)的反比例函数,而不是x的反比例函数.(1)中的y是x的正比例函数.故(2)(3)(4)(6)(7)(8)表示y是x的反比例函数.方法总结:判断一个函数是否是反比例函数,关键看它能否写成y=eq\f(k,x)(k是常数,k≠0)或xy=k(k≠0)及y=kx-1(k≠0)的形式,即两个变量的积是不是一个非零常数.如果两个变量的积是一个不为0的常数,则这两个变量就是反比例关系;否则便不成反比例关系.【类型二】根据反比例函数的概念求值例2若y=(k2+k)xk2-2k-1是反比例函数,试求(k-3)2015的值.解:根据反比例函数的概念,得eq\b\lc\{(\a\vs4\al\co1(k2-2k-1=-1,,k2+k≠0,))所以eq\b\lc\{(\a\vs4\al\co1(k=0或k=2,,k≠0且k≠-1.))即k=2.因此(k-3)2015=(2-3)2015=-1.易错提醒:反比例函数表达式的一般形式y=eq\f(k,x)(k是常数,k≠0)也可以写成y=kx-1(k≠0),利用反比例函数的定义求字母参数的值时,一定要注意y=eq\f(k,x)中k≠0这一条件,不能忽略,否则易造成错误.探究点二:确定反比例函数的表达式【类型一】利用待定系数法求反比例函数的表达式例3已知y是x的反比例函数,当x=-4时,y=3.(1)写出y与x的函数表达式;(2)当x=-2时,求y的值;(3)当y=12时,求x的值.解:(1)设y=eq\f(k,x)(k≠0),∵当x=-4时,y=3,∴3=eq\f(k,-4),解得k=-12.因此,y与x的函数表达式为y=-eq\f(12,x);(2)把x=-2代入y=-eq\f(12,x),得y=-eq\f(12,-2)=6;(3)把y=12代入y=-eq\f(12,x),得12=-eq\f(12,x),x=-1.方法总结:(1)求反比例函数表达式时常用待定系数法,先设其表达式为y=eq\f(k,x)(k≠0),然后再求出k值;(2)当反比例函数的表达式y=eq\f(k,x)(k≠0)确定以后,已知x(或y)的值,将其代入表达式中即可求得相应的y(或x)的值.【类型二】利用待定系数法求组合型函数的表达式例4已知y=y1+y2,其中y1与x成正比例关系,y2与x成反比例关系,并且当x=2时,y=-4;当x=-1时,y=5.求y与x的函数表达式.解:∵y1与x成正比例关系,∴设y1=k1x(k1≠0).∵y2与x成反比例关系,∴设y2=eq\f(k2,x)(k2≠0).∴y=k1x+eq\f(k2,x).把x=2,y=-4及x=-1,y=5代入y=k1x+eq\f(k2,x),得eq\b\lc\{(\a\vs4\al\co1(2k1+\f(k2,2)=-4,,-k1-k2=5,))解得eq\b\lc\{(\a\vs4\al\co1(k1=-1,,k2=-4.))∴y=-x-eq\f(4,x).易错提醒:当一个函数的表达式由若干个常见的函数(正比例函数、反比例函数等)组成时,它们各自有待定系数,不能一律为k.本题易出现设y1=kx(k≠0),y2=eq\f(k,x)(k≠0)的形式,导致两个待定系数都是k的错误.探究点三:列反比例函数关系式例5如图所示,某学校广场有一段25米长的旧围栏(图中用线段AB表示).现打算利用该围栏的一部分(或全部)为一边建成一块面积为100平方米的矩形草坪(图中的矩形CDEF,CD<CF),已知整修旧围栏的价格为1.75元/米,建新围栏的价格为4.5元/米,设所利用的旧围栏CF的长度为x米,修建草坪围栏所需的费用为y元.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若利用旧围栏12米,则计划修建费用应为多少元?解析:可先利用面积把长与宽表示出来,求出y与x之间的关系,再利用x=12求出y的值.解:(1)∵S矩形CDEF=100,CF=x,∴CD=eq\f(100,x),∴y=1.75x+4.5(x+eq\f(200,x))=6.25x+eq\f(900,x)(10<x≤25);(2)由(1)知y=6.25x+eq\f(900,x)(10<x≤25),当x=12时,y=6.25x+eq\f(900,x)=6.25×12+eq\f(900,12)=150,即计划修建费用应为150元.方法总结:解此类题型,首先要理解题意,然后根据已知条件选择合适的数学模型,最后根据实际情况确定自变量的取值范围.三、巩固练习四、课堂小结五、作业布置六、板书设计反比例函数eq\b\lc\{(\a\vs4\al\co1(概念:一般地,如果两个变量x,y之间,的对应关系可以表示成y=\f(k,x)(k,为常数,k≠0)的形式,那么称y,是x的反比例函数,反比例函数,的自变量x不能为0,确定表达式:待定系数法))教学反思21.5反比例函数第2课时反比例函数的图象和性质教学目标【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度价值观】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.教学重难点【教学重点】反比例函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论