




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Acknowledgments
TheauthorswouldliketoacknowledgetheJointOfficeofEnergyandTransportationandtheU.S.DepartmentofEnergy’s(DOE’s)VehicleTechnologiesOfficeforsupportingthisanalysis.SpecificthankstoDOE,U.S.DepartmentofTransportation,andJointOfficestafffortheirongoingguidance,includingJacobWard,RaphaelIsaac,PatrickWalsh,WayneKillen,RachaelNealer,LissaMyers,SuraiyaMotsinger,AlanJenn,NoelCrisostomo,KaraPodkaminer,AlexSchroeder,GabeKlein,AndrewRodgers,AndrewWishnia,andMichaelBerube.
InternalsupportattheNationalRenewableEnergyLaboratorywascriticaltocompletionofthisreport,includingfromJeffGonder,MatteoMuratori,AndrewMeintz,ArthurYip,NickReinicke,JustinRickard,ElizabethStone,MichaelDeneen,JohnFarrell,ChrisGearhart,andJohneyGreen.
TheauthorswouldalsoliketothankcolleaguesattheCaliforniaEnergyCommission(MichaelNicholasandAdamDavis)andU.S.EnvironmentalProtectionAgency(SusanBurkeandMeredithCleveland)forongoingcollaborationsthathavebeensynergistictowardtheexecutionofthisanalysis,includingsupportforEVI-ProandEVI-RoadTrip.
TimelycontributionsfromAtlasPublicPolicywerenecessarytoaccuratelyestimatethemagnitudeofcharginginfrastructureannouncementsfromthepublicandprivatesectors.ThankstoSpencerBurget,NoahGabriel,andLucyMcKenzie.
Specialthankstoexternalreviewerswhoprovidedfeedbackduringvariousphasesofthiswork.Whilereviewerswerecriticaltoimprovingthequalityofthisanalysis,theviewsexpressedinthisreportarenotnecessarilyareflectionoftheir(ortheirorganization’s)opinions.Externalreviewersincluded:
CharlesSatterfield………...EdisonElectricInstitute
JamieDunckley…………………ElectricPowerResearchInstitute
PaulJ.Allen………………EnvironmentalResourcesManagement
ColinMurchieandAlexBeaton..............................................................................................EVgo
JamieHall,AlexanderKeros,MichaelPotter,andKellyJezierski.........................GeneralMotors
BrianWilkie,ChristopherCoy,andRyanWheeler…………………NationalGrid
JenRoberton………NewYorkStateDepartmentofPublicService
VincentRiscica…….NewYorkStateEnergyResearch&DevelopmentAuthority
ErickKarlen……………...ShellRechargeSolutions
MadhurBoloorandMichaelMachala…………………..ToyotaResearchInstitute
NikitaDemidov……………Trillium
SusanBurke….U.S.EnvironmentalProtectionAgency,OfficeofTransportationandAirQuality
iii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Authors
Theauthorsofthisreportare:
EricWood,NationalRenewableEnergyLaboratory(NREL)
BrennanBorlaug,NREL
MattMoniot,NREL
Dong-Yeon(D-Y)Lee,NREL
YanboGe,NREL
FanYang,NREL
ZhaocaiLiu,NREL
iv
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ListofAcronyms
battery-electricvehicle
core-basedstatisticalarea
CombinedChargingSystem
directcurrent
U.S.DepartmentofEnergy
electricvehicle
electricvehicleinfrastructureanalysistoolselectricvehiclesupplyequipment
FederalHighwayAdministrationInternationalCouncilonCleanTransportationJointOfficeofEnergyandTransportation
Level1
Level2
light-dutyvehicle
NorthAmericanChargingSpecificationNationalHouseholdTravelSurveyplug-inelectricvehicle
plug-inhybridelectricvehicle
single-familyhome
stateofcharge
TravelerAnalysisFramework
BEV
CBSA
CCS
DC
DOE
EV
EVI-X
EVSE
FHWA
ICCT
JointOffice
transportationnetworkvehiclemilestraveledzero-emissionvehicle
company
L1
L2
LDV
NACS
NHTS
PEV
PHEV
SFH
SOC
TAF
TNC
VMT
ZEV
v
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ExecutiveSummary
U.S.climategoalsforeconomywidenet-zerogreenhousegasemissionsby2050willrequirerapiddecarbonizationofthelight-dutyvehicle
1
fleet,andplug-inelectricvehicles(PEVs)arepoisedtobecomethepreferredtechnologyforachievingthisend(U.S.DepartmentofEnergy2023).ThespeedofthisintendedtransitiontoPEVsisevidentinactionstakenbygovernmentandprivateindustry,bothintheUnitedStatesandglobally.NewPEVsaleshavereached7%–10%oftheU.S.light-dutymarketasofearly2023(ArgonneNationalLaboratory2023).Globally,PEVsalesaccountedfor14%ofthelight-dutymarketin2022,withChinaandEuropeat29%and21%,respectively(IEA2023).A2021executiveorder(ExecutiveOfficeofthePresident2021)targets50%ofU.S.passengercarandlighttrucksalesaszero-emissionvehicles(ZEVs)by2030,andCaliforniahasestablishedrequirementsfor100%light-dutyZEVsalesby2035(CaliforniaAirResourcesBoard2022),withmanystatesadoptingorconsideringsimilarregulations(Khatib2022).ThesegoalsweresetpriortopassageofthelandmarkU.S.BipartisanInfrastructureLawandInflationReductionAct,whichprovidesubstantialpolicysupportthroughtaxcreditsandinvestmentgrants(ElectrificationCoalition2023).Companiesintheautomotiveindustryhavecommittedtothistransition,withmostcompaniesrapidlyexpandingofferings(BartlettandPreston2023)andmanypledgingtobecomeZEV-onlymanufacturers.TeslahasbeenaZEV-onlycompanysinceitsinceptionin2003;Audi,Fiat,Volvo,andMercedes-BenzaretargetingZEV-onlysalesby2030;andGeneralMotorsandHondaaretargetingZEV-onlysalesby2035and2040,respectively(BloombergNewEnergyFinance2022).Thecombinationofpolicyactionandindustrygoal-settinghasledanalyststoprojectthatby2030,PEVscouldaccountfor48%–61%oftheU.S.light-dutymarket(Slowiketal.2023).Thistransitionisunprecedentedinthehistoryoftheautomotiveindustryandwillrequiresupportacrossmultipledomains,includingadequatesupplychains,favorablepublicpolicy,broadconsumereducation,proactivegridintegration,and(germanetothisreport)anationalchargingnetwork.
AsestablishedbytheInfrastructureInvestmentandJobsAct,alsoknownastheBipartisanInfrastructureLaw,theJointOfficeofEnergyandTransportation(JointOffice)issettingthevisionforanationalchargingnetworkthatisconvenient,affordable,reliable,andequitabletoenableafuturewhereeveryonecanrideanddriveelectric.ThisreportsupportsthevisionoftheJointOfficebypresentingaquantitativeneedsassessment
2
foranationalchargingnetworkcapableofsupporting30–42millionPEVsontheroadby2030.
3
1Thisstudyconsiderspersonallyowned,light-dutyvehicleswithgrossvehicleweightratingof8,500poundsorless.Importantly,thisdefinitionincludesvehiclesdrivenfortransportationnetworkcompanies(ride-hailing)butexcludesmotorcycles,light-dutycommercialvehicles,andClass2band3worktrucks,theimplicationsofwhicharediscussedinSection
4
ofthisreport.
2ThisstudyispresentedasaneedsassessmentwherethenationalchargingnetworkissizedrelativetosimulateddemandfromahypotheticalPEVfleet.Thisisslightlydifferentfromaninfrastructureforecast,whichmightmakeconsiderationsforchargingprovidersbeingincentivized(byprivateinvestorsorpublicfunding)tofuture-proofinvestments,installcharginginquantitiesfarexceedingdemand,ordeploychargingaspartofalargerbusinessmodelthatconsidersutilizationasasecondarymetricofsuccess.
3NationalPEVfleetsizescenarioshavebeendevelopedusingtheNationalRenewableEnergyLaboratory’sTransportationEnergy&MobilityPathwayOptions(TEMPO)modelandareconsistentwithmultiple2030scenariosdevelopedbythirdparties.PleaseseeSection
2.2.1
foradditionaldetails.
vi
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
EstimatinginfrastructureneedsatthenationallevelisachallenginganalyticproblemthatrequiresquantifyingtheneedsoffuturePEVdriversinvarioususecases,underregion-specificenvironmentalconditions,andwithconsiderationforthebuiltenvironment.ThisanalysisleveragestheNationalRenewableEnergyLaboratory’ssuiteofelectricvehicleinfrastructureanalysistools(EVI-X)andthebestavailablereal-worlddatadescribingPEVadoptionpatterns,vehicletechnology,residentialaccess,travelprofiles,andchargingbehaviortoestimatefuturechargingneeds.MultiplePEVchargingusecasesareconsidered,includingtypicalneedstoaccommodatedailydrivingforthosewithandwithoutresidentialaccess,corridor-basedcharging
4
supportinglong-distanceroadtrips,andride-hailingelectrification.Whiletheanalysisisnationalinscope,thesimulationframeworkenablesinspectionofresultsbystateandcity,withparametricsensitivityanalysisusedtotestarangeofassumptions.Thismodelingapproachisusedtodrawthefollowingconclusions:
•Convenientandaffordablechargingat/nearhomeiscoretotheecosystembutmustbecomplementedbyreliablepublicfastcharging.IndustryfocusgroupswithprospectivePEVbuyersconsistentlyrevealthatconsumerswantchargingthatisasfastaspossible.However,consumerpreferencestendtoshiftafteraPEVpurchaseismadeandlivedexperiencewithchargingisaccumulated.HomecharginghasbeenshowntobethepreferenceofmanyPEVownersduetoitscostandconvenience.Thisdichotomysuggeststhatreliablepublicfastchargingiskeytoconsumerconfidence,butalsothatasuccessfulchargingecosystemwillprovidetherightbalanceoffastchargingandconvenientdestinationchargingintheappropriatelocations.
5
Usingsophisticatedplanningtools,thisanalysisfindsthatanationalnetworkin2030couldbecomposedof26–35millionportstosupport30–42millionPEVs.Foramid-adoptionscenarioof33millionPEVs,anationalnetworkof28millionportscouldconsistof:
o26.8millionprivatelyaccessibleLevel1andLevel2chargingportslocatedatsingle-familyhomes,multifamilyproperties,andworkplaces
6
o182,000publiclyaccessiblefastchargingportsalonghighwaycorridorsandinlocalcommunities
o1millionpubliclyaccessibleLevel2chargingportsprimarilylocatednearhomesandworkplaces(includinginhigh-densityneighborhoods,atofficebuildings,andatretailoutlets).
Incontrasttogasstations,whichtypicallyrequirededicatedstopstopubliclocations,thePEVchargingnetworkhasthepotentialtoprovidecharginginlocationsthatdonot
4ThisstudydefinescorridorsasallroadswithintheNationalHighwaySystem(FederalHighwayAdministration2017),includingtheInterstateHighwaySystem,aswellasotherroadsimportanttonationaltransportation.
5ThisstudyconsidersLevel1andLevel2alternating-current(AC)chargersratedbetween1.4and19.2kWasdestinationchargersforlight-dutyvehicles.Direct-current(DC)chargerswithnominalpowerratingsbetween150and350+kWareconsideredfastchargersforlight-dutyvehiclesinthiswork.ItistheopinionoftheauthorsthatreferringtoallDCchargingas“DCfastcharging”(DCFC)(asistypicallydone)isinappropriategiventhattheuseof“fast”asadescriptorultimatelydependsonthecapacityofthebatterybeingcharged.Aslargercapacitylight-dutyPEVsenterthemarketandmedium-andheavy-dutymodeloptionsemerge,itislikelythecasethatsomeDCchargerswillactuallybeusedtoslowlychargePEVs.Thus,thecommonpracticeofreferringtoallDCchargingasDCFCisnoticeablyabsentfromthisreport.
6ThisanalysisemploysanovelcharginginfrastructuretaxonomythatconsidersworkplacechargingasamixofpubliclyandprivatelyaccessibleinfrastructureatavarietyoflocationtypesasdiscussedinSection
2.3.2.
vii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
requireanadditionaltriporstop.Chargingatlocationswithlongdwelltimes(at/nearhome,work,orotherdestinations)hasthepotentialtoprovidedriverswithamoreconvenientexperience.ThisnetworkmustincludereliablefastchargingsolutionstosupportPEVusecasesnoteasilyenabledbydestinationcharging,includinglong-distancetravelandride-hailing,andtomakeelectricvehicleownershipattainableforthosewithoutreliableaccesschargingwhileathomeoratwork.
•Fastchargingservesmultipleusecases,andtechnologyisevolvingrapidly.Themajorityofthe182,000fastchargingports(65%)simulatedinthemid-adoptionscenariomeettheneedsofthosewithoutaccesstoreliableovernightresidentialcharging(estimatedas3millionvehiclesby2030inthemid-adoptionscenario).Supportforride-hailingdriversandtravelersmakinglong-distancetripsaccountsfortheremainderofsimulatedfastchargingdemand(21%and14%,respectively).Whilemostnear-termfastchargingdemandissimulatedasbeingmetby150-kWDCchargers,advancesinbatterytechnologyareexpectedtostimulatedemandforhigher-powercharging.Weestimatethatby2030,DCchargersratedforatleast350kWwillbethemostprevalenttechnologyacrossthenationalfastchargingnetwork.
•Thesizeandcompositionofthe2030nationalpublicchargingnetworkwillultimatelydependonevolvingconsumerbehaviorandwillvarybycommunity.
Whilegrowthinalltypesofchargingisnecessary,theeventualsizeandcompositionofthenationalpublicchargingnetworkwillultimatelydependonthenationalrateofPEVadoption,PEVpreferencesacrossurban,suburban,andrurallocations,accesstoresidential/overnightcharging,andindividualchargingpreferences.Sensitivityanalysissuggeststhatthesize(asmeasuredbynumberofports)ofthe2030nationalpublicchargingnetworkcouldvarybyupto50%(excludingprivatelyaccessibleinfrastructure)byvaryingtheshareofplug-inhybrids,driverchargingetiquette,andaccesstoprivateworkplacecharging(seealternatescenariospresentedinSection
3.3
).Additionally,thenationalnetworkisexpectedtovarydramaticallybycommunity.Forexample,denselypopulatedareaswillrequiresignificantinvestmentstosupportthosewithoutresidentialaccessandride-hailingelectrification,whilemoreruralareasareexpectedtorequirefastchargingalonghighwaystosupportlong-distancetravelforthosepassingthrough.
•ContinuedinvestmentsinU.S.charginginfrastructurearenecessary.Acumulative
nationalcapitalinvestmentof$53–$127billion
7
incharginginfrastructureisneededby2030(includingprivateresidentialcharging)tosupport33millionPEVs.Thelargerangeofpotentialcapitalcostsfoundinthisstudyisaresultofvariableandevolvingequipmentandinstallationcostsobservedwithintheindustryacrosschargingnetworks,locations,andsitedesigns.Theestimatedcumulativecapitalinvestmentincludes:
o$22–$72billionforprivatelyaccessibleLevel1andLevel2chargingports
o$27–$44billionforpubliclyaccessiblefastchargingports
o$5–$11billionforpubliclyaccessibleLevel2chargingports.
Thecostofgridupgradesanddistributedenergyresourceshavebeenexcludedfromtheseestimates.Whiletheseexcludedcostscanbesignificantinmanycasesandwill
7Thescopeofcostestimatescanbegenerallydefinedascapitalexpensesforequipmentandinstallationnecessarytosupportvehiclecharging.PleaserefertoSection
2.3.4
foradditionaldetail.
viii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ultimatelybecriticalinbuildingoutthenationalchargingnetwork,theytendtobesite-specificandhavebeendeemedoutofscopeforthisanalysis.
•ExistingannouncementsputtheUnitedStatesonapathtomeet2030investmentneeds.Thisreportestimatesthata$31–$55-billioncumulativecapitalinvestmentinpubliclyaccessiblecharginginfrastructureisnecessarytosupportamid-adoptionscenarioof33millionPEVsontheroadby2030.AsofMarch2023,weestimate$23.7billionofcapitalhasbeenannouncedforpubliclyaccessiblelight-dutyPEVcharginginfrastructurethroughtheendofthedecade,
8
includingfromprivatefirms,thepublicsector(includingfederal,state,andlocalgovernments),andelectricutilities.Publicandprivateinvestmentsinpubliclyaccessiblecharginginfrastructurehaveacceleratedinrecentyears.Ifsustainedwithlong-termmarketcertaintygroundedinacceleratingconsumerdemand,thesepublicandprivateinvestmentswillputtheUnitedStatesonapathtomeetingtheinfrastructureneedssimulatedinthisreport.Existingandfutureannouncementsmaybeabletoleveragedirectandindirectincentivestodeploycharginginfrastructurethroughavarietyofprograms,includingfromtheInflationReductionActandtheLowCarbonFuelStandard,ultimatelyextendingthereachofannouncedinvestments.
Whilethisanalysispresentsaneeds-basedassessmentwherecharginginfrastructureisbroughtonlinesimultaneoustogrowthinthevehiclefleet,actualcharginginfrastructurewilllikelybenecessarybeforedemandforchargingmaterializes.Thepositionthatinfrastructureinvestmentshould“lead”vehicledeploymentisbasedontheunderstandingthatmanydriverswillneedtoseechargingavailableatthelocationstheyfrequentandalongthehighwaystheytravelbeforebecomingconfidentinthepurchaseofanelectricvehicle(Muratorietal.2020).Ontheotherhand,infrastructureinvestmentshouldbecarefulnottoleadvehicledeploymenttothepointofcreatingprolongedperiodsofpoorutilization,therebyjeopardizingthefinancialviabilityofinfrastructureoperators.
9
Theseconsiderationssuggestthebalanceofsupplyanddemandforchargingshouldbecloselymonitoredatthelocallevelandthatstepsshouldbetakentoenabletheefficientdeploymentofcharging(definedasminimizingsoftcosts[NelderandRogers2019]),includingstreamlinedpermittingandutilityserviceconnectionprocesses(Hernandez2022).Whilenotthecasetoday,anenvironmentwhereinfrastructurecanbedeployedefficientlyenablestheindustrytoresponsivelybalancethesupplyofinfrastructuresubjecttoforecastsforunprecedentedincreasesindemand.
Thisstudyleadsustoreflectonhowcharginginfrastructureplanninghasoftenbeenanalogizedtoapyramid,withchargingathomeasthefoundation,publicfastchargingasthesmallestpartofthenetworkatthetipofthepyramid,anddestinationchargingawayfromhomeoccupyingthemiddleofthepyramid.Whilethisconcepthasservedausefulpurposeovertheyears,werecommendanewconceptualmodel.Thebalanceofpublicversusprivatechargingandfast
8BasedoninvestmenttrackingconductedbyAtlasPublicPolicy.
9Whileutilizationisakeymetrictomoststationowners,itisnottheonlymetricofsuccess.Businessmodelsunderlyingchargingnetworksarecomplexandevolving,withsomestationscollocatedwithmorelucrativeretailactivities(asisthecasewithmostgasstationstodayofferingfuelatlowermarginsthanitemsintheconveniencestore)andsomestationsdeployedatalosstohelp“complete”thenetworkinareascriticalforenablinginfrequent,long-distancetravel.Businessrelationshipsbetweenchargingnetworks,automakers,advertisers,andsitehostsalsomakeitdifficulttomeasurethesuccessofanindividualstationfromutilizationalone.
ix
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
chargingversusdestinationchargingsuggestsaplanningphilosophyakintoatree,asshownin
FigureES-1
.
Aswithatree,therearepartsofthenationalchargingnetworkthatarevisibleandthosethatarehidden.Publicchargingisthevisiblepartofthenetworkthatcanbeseenalonghighways,atpopulardestinations,andthroughdataaccessibleonline.Privatechargingisthehiddenpartofthenetworktuckedawayinpersonalgarages,atapartmentcomplexes,andatcertaintypesofworkplaces.Thisprivatenetworkisakintotherootsofatree,asitisfoundationaltotherestofthesystemandanenablerforgrowthinmorevisiblelocations.
FigureES-1.Conceptualillustrationofnationalcharginginfrastructureneeds
Ifaccesstoprivatechargingaretherootsofthesystem,areliablepublicfastchargingnetworkisthetrunk,asitbenefitsfromaccesstochargingathomeandotherprivatelocations(akeysellingpointofPEVs)andultimatelyhelpsgrowthesystembymakingPEVownershipmoreconvenient(enablingroadtripsandsupportingthosewithoutresidentialaccess).Whilefastchargingisestimatedtobearelativelysmallpartofthenationalnetworkintermsofnumberoftotalports,itrequiressignificantinvestmentandisvitaltoenablingfuturegrowthbyassuringdriverstheywillbeabletochargequicklywhenevertheyneedorwant.
Thelastpartofthesystemisabroadsetofpubliclyaccessibledestinationcharginglocationsindenseneighborhoods,officebuildings,andretailoutletswherethespeedofchargingcanbedesignedtomatchtypicalparkingtimes(“right-speeding”).Thisnetworkissimilartothebranchesofatreeinthatitsexistenceiscontingentonabroadprivatenetworkandareliablefastchargingnetwork.Aswiththebranchesofatree,thepublicdestinationchargingnetworkisill-equippedtogrowwithoutthesupportofchargingelsewhere.
x
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Thisanalysisenvisionsafuturenationalchargingnetworkthatisstrategicinlocatingtherightamountofcharging,intherightlocations,withappropriatechargingpower.EnsuringthatthisinfrastructureisreliablewillbeessentialtoestablishingdriverconfidenceandacceleratingwidespreadadoptionofPEVs.AsuccessfulnationalchargingnetworkwillpositionPEVstoprovideasuperiordrivingexperience,lowertotalcostofownershipfordrivers,becomeprofitableforindustryparticipants,andenablegridintegration,allwhilemeetingU.S.climategoals.
xi
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
TableofContents
ExecutiveSummary v
1.Introduction 1
1.1.CurrentStateofU.S.PEVandEVSEMarkets 2
1.2.RecentChargingInfrastructureInvestmentandAnalysisStudies 3
1.3.EquityConsiderations 4
1.4.ReportMotivationandStructure 5
2.AnIntegratedApproachforMultipleLDVUseCases 6
2.1.ModelingPhilosophyandSimulationPipeline 8
2.1.1.EVI-Pro:ChargingDemandsforDailyTravel 9
2.1.2.EVI-RoadTrip:ChargingDemandsforLong-DistanceTravel 10
2.1.3.EVI-OnDemand:ChargingDemandsforRide-HailingPEVs 11
2.1.4.Utilization-BasedNetworkSizing 12
2.2.Demand-SideConsiderations:DefiningPEVUseCaseScenarios 13
2.2.1.PEVAdoptionandFleetComposition 15
2.2.2.PEVTechnologyAttributes 18
2.2.3.ResidentialChargingAccess(There’sNoPlaceLikeHome) 20
2.2.4.DrivingPatterns 23
2.2.5.ChargingBehavior 27
2.3.Supply-SideConsiderations:ChargingNetworkTerminology,Taxonomy,Utilization,
andCost 28
2.3.1.EVSETerminology 28
2.3.2.EVSETaxonomy 29
2.3.3.NetworkUtilization 30
2.3.4.Cost 33
3.TheNationalChargingNetworkof2030 35
3.1.2030ResultsbyEVSETaxonomy,PEVUseCase,andRegion 35
3.1.1.ResultsbyEVSETaxonomy 35
3.1.2.ResultsbyPEVUseCase 37
3.1.3.ResultsbyRegion 40
3.2.NetworkGrowthFrom2022to2030 49
3.3.AlternateScenarios 51
4.Discussion 56
4.1.PhilosophicalContribution 56
4.2.ModelingUncertainty 57
4.3.CostEstimateConsiderations 58
4.4.CriticalTopicsforFutureResearch 59
4.5.AccessingEVI-XCapabilities 60
References 61
Appendix:2022ModelingComparison 67
xii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ListofFigures
FigureES-1.Conceptualillustrationofnationalcharginginfrastructureneeds ix
Figure1.SharedsimulationpipelineintegratingEVI-Pro,EVI-RoadTrip,andEVI-OnDemand 9
Figure2.EVI-Problockdiagramforchargingbehaviorsimulationsandnetworkdesign 10
Figure3.EVI-RoadTripblockdiagramfortrafficgeneration,chargingbehaviorsimulations,andnetwork
design 11
Figure4.EVI-OnDemandblockdiagramfordriversimulationsandrelatedassumptions 12
Figure5.Conceptualdiagramillustratingindependentdemandestimations,demandaggregation,and
integratednetworkdesign 12
Figure6.CompositehourlydemandforDCchargingbyusecaseforanillustrativeregion 13
Figure7.U.S.nationallight-dutyPEVstockunderthreeadoptionscenarios 16
Figure8.Assumedspatialdistributionof33millionPEVsin2030byCBSAandstate 17
Figure9.Spatialdistributionofnew(2019–2022)LDVregistrationsbybodytype 18
Figure10.ResidentialchargingaccessibilityscenariosasafunctionofPEVstockshare.Intheboxplot
figure,theboxreflectstheinnerquartilerange(25%–75%),withthehorizontalline
reflectingthemedianvalue.Whiskersrepresentthe5thand95thpercentilevalues,
respectively 21
Figure11.Likelihoodofovernightchargingaccessforride-hailingdriversforthebaselinescenario
acrossallmetropolitanCBSAs 22
Figure12.2017NHTSautoweekda
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1条形统计图(教学设计)-2024-2025学年四年级上册数学人教版
- 《分糖果》(教学设计)-2024-2025学年北师大版数学二年级上册
- 多元化教学活动的设计与开展计划
- 学校社团发展规划计划
- 品牌战略规划的系统思考计划
- 2025年画具画材合作协议书
- 2025年渠道推广合作协议
- 科技公司用到的合同(2025年版)
- 2025年双酚A合作协议书
- 2025年南宁货运从业资格证模拟考试答案
- 常州2025年江苏常州工程职业技术学院其他专技岗管理岗招聘笔试历年参考题库附带答案详解
- 2025年大学宿舍物业服务质量承包合同
- (二调)武汉市2025届高中毕业生二月调研考试 生物试卷(含标准答案)
- 2025年安徽职业技术学院单招职业适应性考试题库含答案
- 2024大模型安全研究报告
- 2025年安徽审计职业学院单招职业技能测试题库附答案
- 2025河南中烟许昌卷烟厂招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 2020年国际命名化妆品原料INCI英汉对照名称
- 2025年高考数学二级结论篇(核心知识背记手册)-专项训练
- 医药行业扭亏专项措施方案
- 2025年重庆市安全员《B证》考试题库及答案
评论
0/150
提交评论