




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
银纳米球及其阵列LSPR现象仿真分析€刘国华,孙辉,张维,王程,王育剑,徐凯,岳钊(南开大学信息技术科学学院,天津,300071)摘要:本文采用离散偶极近似〔DDA:DiscreteDipoleApproximation〕和时域有限差分〔FDTD:FiniteDifferenceTimeDomain〕方法对不同半径的银纳米球及其组合阵列的消光现象与耦合作用进行了分析讨论。用DDA方法得到了不同半径银纳米球及其阵列的消光光谱及其消光效率,吸收效率和散射效率等;在此基础上,利用FDTD方法研究了双纳米球阵列的耦合作用及其电场分布;通过分析比较得到了一些关于纳米颗粒局域夕b表等离子体共振〔LSPR:LocalizedSurfacePlasmonResonance]有意义的变化规律,并给出了它们的折射率灵敏度范围。同时对消光现象和耦合作用的物理机制也进行了分析,对金属纳米颗粒的应用研究具有参考意义。关键词:局域夕表等离子体共振;离散偶极近似;时域有限差分;银纳米球SimulationandAnalysisofAgNanosphereandArray'sLSPRPhenomenaLiuGuohua,Sunhui,ZhangWei,WangCheng,Wangyujian,Xukai,YueZhao(CollegeofInformationTechnicalScienceofNankaiUniversity,Tianjin,300071)Abstract:TheDiscreteDipoleApproximation(DDA)methodandtheFDTD(FiniteDifferenceTimeDomain)methodareusedforanalyzingdifferentradiusofsilvernanoparticlesandtheircouplesandtheirarrays.DDAmethodisusedforsimulatingdifferentradiusandthearrayofsilvernanoparticles'extinctionspectraandextinctionefficiencyabsorptionefficiencyandthescatteringefficiency;FDTDmethodisusedforthecouplingoftwonanoparticlesandsimulatingtheiraroundelectricfielddistribution;byanalyzingthese,wehavegottensomeimportantlawsofnanoparticles'LocalizedSurfacePlasmonResonance(LSPR)phenomenon.ItwillbeusedtostudyandproducetheLSPRbiosensors.Keyword:LocalizeSurfacePlasmonResonance,DiscreteDipoleApproximation,FiniteDifferenceTimeDomain,Agnanoparticles1引言贵金属纳米颗粒〔金、银等〕在紫外-可见光区域存在很强的吸收光谱带,这是由于入射光子频率与金属传导电子的整体振荡发生共振,纳米颗粒或金属岛会对光子能量产生很强的吸收作用,这就是所谓的局域外表等离子体共振〔LSPR〕现象。吸收峰在光谱上的位置与纳米颗粒的大小、形状、间距及局域介电环境密切相关。这种现象在十八世纪法拉第研究胶体金时被发现[1],目前基于LSPR现象的传感器被广泛研究,用于药物检测,生物检测、细胞标记、定点诊断、分子动力学研究及疾病诊断等方面。这种传感器具有无需标记、实时、无污染、高灵敏度检测、所需的样液少等优点。1908年,Mie提出了解释LSPR现象的Mie理论[2],Mie理论简单实用,能很好的解决球形纳米颗粒的消光〔包括吸收和散射〕问题,但是不能解决复杂形状的颗粒以及颗粒之间的互相耦合作用及基底对纳米颗粒消光特性的影响问题。为此,各种数值计算理论和方法相继产生,如有限元法(FEM:FiniteElementMethod)[3],严格耦合波法(RCWA:RigorousCoupled-WaveAnalysis)[4],离散偶极近似法(DDA:DiscreteDipoleApproximation)[5]和时域有限差分法(FDTD:FiniteDifferenceTimeDomain)[6]等等。其中DDA和FDTD方法在分析LSPR现象中使用较多⑺,但多数只限于对某一种特例的分析;本文利用两种方法的优势互补,既分析了纳米颗粒的消光现象,也分析了纳米颗粒阵列的耦合作用。2DDA与FDTD方法的比较DDA方法最初是由DeVoe[8]提出用于分析分子聚合体的光学特性,经过逐步的发展与完善而成为一种研究纳米光学现象的有力工具。到目前为止已经有大量的文献详细讨论了DDA的原理及其应用[7,9,10]。Drain等人在DDA方法的基础上应用快速傅里叶变换和离散共轭梯度的方法制作了开源软件DDSCATm。DDSCAT可以将各种不同形状,不同材质的纳米颗粒离散成偶极子,计算其消光效率因子(Q_ext),吸收效率因子(Q_abs),散射效率因子(Q_sca),其中Q_ext=Q_abs+Q_sca。不仅可以计算在单一频率下的纳米颗粒的消光情况,而且可以计算纳米颗粒在连续频谱下的消光现象。此软件不仅适用于单个纳米颗粒,对周期排列的纳米颗粒阵列也同样适用。缺点是对于不是软件自有形状的颗粒需要重新编程建模,建模的过程不是可视化的,需要对输出结果进行再处理才能描绘颗粒外表电场分布情况。FDTD方[12],用变量离散的,含有有限个未知数的差分方程近似的替代连续变量的微分方程。FDTD是将连续的空间划分为一个个的Yee元胞,以Yee元胞为空间电磁场离散单元,将麦克斯韦旋度方程转化为差分方程,结合电脑技术解决电磁学问题。XFDTD6.3.8.4是Remcom公司开发的基于FDTD的电磁学仿真软件,可以应用于分析贵金属纳米颗粒的LSPR现象[13]。此软件可以很方便的进行可视化建模,有别于DDSCAT中采用的是真实的材料折射率,XFDTD需要用Debye模型或者Lorentz模型来模拟金属在不同频率下的介电常数,从而带来了误差。而且对于在连续光谱下的消光问题,需要将入射光源设置为高斯脉冲或者修正高斯脉冲来模拟一定波段光源的频谱,而结果通过傅里叶变换将时域的结果转化为频域的结果,优点是可以实时的仿真纳米颗粒与光作用的过程,可以很方便的输出纳米颗粒周围的电场分布图。本文将综合运用两种方法的优势,用DDSCAT分析各种纳米颗粒在不同波段的光谱,用XFDTD分析在具体光谱下的纳米颗粒外表电场分布。在分析不同大小的纳米颗粒的消光现象的基础上,分析消光现象随两个纳米颗粒的间距以及入射光方向而产生的变化,以及纳米颗粒组成的阵列的消光现象。3纳米颗粒的消光光谱及其电场分布利用DDSCAT软件,分析了半径R为30nm的硅球,二氧化硅球以及银球在可见光区域内的消光现象。它们分别代表纳米半导体、绝缘体和金属与入射光之间的相互作用。各折射率参数取自参考文献[14],仿真结果如图1。图1不同材质的纳米球形颗粒的消光光谱Fig.1Theextinctionspectraofdifferentmaterialsnanoparticlessphere从图1可以发现二氧化硅的消光趋近于零,硅在波长391nm处存在很弱的的消光峰⑮,银球在波长371nm处产生很强的消光峰,此时发生了LSPR现象。我们用XFDTD软件分析了半径为30nm的银和二氧化硅两种球形颗粒的周围电场分布,银的ModifiedDebye模型参数取自文献[16],二氧化硅的折射率为1.47〔介电常数,电导率为10-12X1014Hz〕,沿x方向偏振,振幅为1v/m,沿+z方向传播。得到在x-y截面的外表电场分布如图2所示。
从图2中可以看出,在x-y截面,银球外表的最大电场强度可到达23.99v/m,且外表电场分布不均匀,说明有共振现象发生;而二氧化硅球的最大电场强度仅为1.546v/m,且外表电场分布变化不大,说明没有明显的共振现象发生;通过消光光谱和外表电场分布的比照可以看出,只有金属,特别贵金属才有明显的LSPR现象发生。这是由于金属的原子核带正电,而其周围的价电子带负电,在没有光照的作用下,可以把金属中的价电子看成是均匀正电荷背景中运动的电子气体,这种结构可以看作是一种等离子体,即金属外表等离子体。当特定波长的光入射到颗粒外表时,金属中电子密度分布就会变得不均匀。设想在某一区域电子密度低于平均密度,这样便形成局部的正电荷过剩;这时由于库伦引力的作用,会把邻近的电子吸引到该领域;而由于被吸引的电子具有惯性,又会使该区域聚集过多的负电荷;然后,由于电子间的排斥作用,使电子再度离开该区域,从而形成价电子相对于正电荷背景的密度起伏振荡,这就是LSPR现象。
4半径对球形纳米颗粒消光的影响郭伟杰等人[17]通过Mie理论计算得到,银纳米颗粒的消光光谱随着颗粒半径R的大小而变化,当半径小于4nm时,消光效率近似为0,当R在4nm到56nm之间时,消光效率随波长变化曲线是单峰的形式,而当56nm〈R〈500nm,由于纳米颗粒半径的增大,高阶偶极子的作用,消光效率曲线呈现多个波峰的形式。我们用DDA方法分析了半径R从5nm到50nm的银纳米颗粒在光波长300nm到800nm的消光效率〔Q_ext〕、吸收效率〔Q_abs〕、散射效率〔Q_sca〕(Q_ext=Q_abs+Q_sca)。仿真结果如图3、图4所示。〔a〕R=5nm 〔b〕R=30nm图3不同大小的银纳米颗粒的消光效率、吸收效率、散射效率
Fig.3TheQ_ext,Q_abs,Q_scaofdifferentsizesilvernanoparticles图4消光现象与银纳米颗粒半径之间的关系Fig.4Therelationshipbetweensilverextinctionphenomenonandradiusofnanoparticles从图3可以看出当R=5nm时,Q_abs占Q_ext的主导地位,消光峰在356nm处,而当R=40nm时,Q_abs和Q_sca差不多,消光峰在371nm处,并且此时消光效率大于R=5nm时的消光效率。记录下不同大小的纳米颗粒的消光峰的位置如图4〔a〕,分析在光谱波峰时的Q_ext、Q_abs、Q_sccL消光峰位置与粒子半径R的拟合曲线为:消光峰波长〔nm〕入RR2。在同为球形纳米颗粒时,当颗粒半径较小时,消光峰位置波长随颗粒半径变化较小,而当颗粒半径增大时,消光峰位置波长受颗粒半径的影响较大。从图4〔b〕可以看出Q_ext、Q_abs随着粒子半径R的增大先增大后减小;在R=40nm时,Q_ext最大;R=24nm时,Q_abs最大。Q_sca则一直随着颗粒半径而增大。随着R增大,
Q_abs/Q_ext越来越小,Q_sca/Q_ext越来越大阴,如图4〔c〕所示。同样,用DDA方法分析了R从5nm到50nm之间的银纳米颗粒分别在入射波长为200nm,400nm、600nm、800nm时的Q_abs/Q_extQ_sca/Q_ext的变化规律。1101009080)%)%605040302010-100-10图5不同大小的银纳米颗粒在波长不同的入射光时Q_abs/Q_ext,Q_sca/Q_extFig.5TheQ_abs/Q_ext,Q_sca/Q_extofdifferentsizesofsilvernanoparticles
underdifferentincidentwacelength从图中可以看出,不管是在消光峰处,还是在其它入射波长处,随着颗粒半径R的增大,Q_abs/Q_ext越来越小,Q_sca/Q_ext越来越大;即颗粒越大,散射效率所占的总的消光效率的比例越大。5纳米颗粒之间的耦合作用为了分析纳米颗粒之间的耦合作用,以半径为30nm的两个银球为例,分析它们相距d分别为Onm、5nm、10nm、30nm、60nm时的消光现象。分别取入射光平行于和垂直于两颗粒中心轴线两种情况;当两个颗粒相互作用时,其消光现象及外表电场与入射光的方向有关。图6消光光谱与纳米颗粒间距及入射光方向的关系Fig.6Therelationshipbetweentheextinctionspectraandthenanoparticlesdistance,the
directionofincidentlight可以看出,当光入射方向平行于颗粒之间连线时,随着颗粒间距的增加,消光峰位置产生红移。而当光线垂直与颗粒之间连线时,随着颗粒间距的增加,消光峰位置产生蓝移,当两个颗粒距离为Onm时,由于高阶偶极子的作用,产生了多个消光峰。当两个颗粒的距离大于颗粒半径时,消光峰的位置与单个银颗粒的消光峰一致。X10i4Hz〕,则在两种入射光作用下x-z截面上的电场分布分别于图7〔a〕,〔b〕所示。〔a〕Theincidentlightparalleltotheaxis(b〕Theincidentlightperpendiculartotheaxis
图7d=10nm时两个颗粒的外表电场分布Fig.7Thesurfaceelectricfielddistributionoftwonanoparticleswhend=10nm由图7说明,当入射光平行于轴线时,最大电场强度为7.879v/m,最大电场强度集中于两个颗粒的两侧,而当入射光垂直于轴线时,最大电场强度为44.16v/m,而且最大电场强度集中于两个颗粒之间。外表电场的大小也与两个纳米颗粒之间的距离有关,当d=0nm时,外表最大电场强度可以到达129v/m,当两个颗粒距离变大时,最大外表电场强度也减小。这是因为当光线平行于轴线时,其电场方向与入射光方向垂直,即电场方向垂直于两颗粒连线方向,引起颗粒共振的方向与轴线垂直,此时两个颗粒之间的耦合作用较小。而当入射光垂直于轴线时,入射光电场方向与颗粒轴线平行,引起共振的方向也于轴线平行,在两个颗粒之间由于偶极子的相互作用,产生很强的共振作用,导致其外表电场强度很大,纳米颗粒外表的等离子体是有一定的距离的,所以相隔的越近,作用越剧烈,而当距离相对较大时,无论入射光的方向如何,两个颗粒的耦合作用都较小。用DDSCAT分析R=30nm的两个银纳米颗粒在相隔10nm时在不同介质〔真空,n=l;水,n=1.33;丙酮,n=1.36;二氯甲烷,n=1.42;及嘧啶,n=1.51〕,分析其折射率灵敏度。两个纳米颗粒的消光峰波长折射率灵敏度:当光垂直入射时,消光峰波长〔nm〕入=+n;当光水平入射时,消光峰波长〔nm〕入=+n。即当光垂直入射时,两个纳米颗粒对于外界折射率的变化更敏感。6银纳米球及其阵列的消光光谱与折射率灵敏度分析与纳米颗粒阵列相比,单个纳米颗粒在检测应用方面也有很多优点,如检测的极限更高,需要样品的容量更少,可以运用到多通道检测等,不过制作费用也较高[19];因此,目前一般采用纳米球光刻〔NSL:NanosphereLithography〕技术在硅片或玻璃片上制作纳米颗粒的周期排列[20]。用DDSCAT分析方法,对半径为5nm,任意两球间隔d分别为Onm及5nm时的银纳米球的二维周期阵列在可见光范围内的消光光谱进行了分析,其结果如图8所示。
(a)d=0nm (b)d=5nm图8不同间距的银纳米球周期阵列的消光光谱Fig.8Theextinctionspectraofdifferentseparationdistancesilvernanoparticlesarrays从上图可以看出,周期排列的银纳米球阵列出现两个消光峰,d=0的两个消光峰分别在nm和nm处,在372.92nm处的消光峰主要是由吸收引起的,nm处的消光峰比第一个峰强度大很多,主要是由散射引起的。这是由于当纳米颗粒之间的距离为0时,纳米颗粒的总体形状变得复杂,出现多偶极子的共振,因而出现第二个消光峰。而d=5nm的第二个消光峰明显比第一个消光峰弱,可以预测当周期阵列型的纳米颗粒间距相对较大时,其消光峰会与单个纳米颗粒的消光峰一致,即为单峰形式。为了分析银纳米球及其阵列的折射率灵敏度,假设待测介质环境分别为真空〔n=l〕、水(n=1.33)、丙酮(n=1.36)、二氯甲烷(n=1.42)及嘧啶(n=1.51)等,分析比较它们的消光现象由图9给出。1htgnelevawkaeP6001htgnelevawkaeP600(a)TheextinctionspectraIndifferentmedium(b)Thefittingcurvebetweenextinctionpeak(a)TheextinctionspectraIndifferentmedium(b)Thefittingcurvebetweenextinctionpeakpositionandtheexternalmediumrefractiveindex
图9银纳米球阵列在不同外部介质下的消光光谱和折射率灵敏度Fig.9Thextinctionspectraandsensitivityofsilvernanoparticlesarrayunderdifferent
externalmedium由图9(b)可得两个消光峰的位置波长与外部介质的折射率拟合直线为:消光峰1波长〔nm〕入=214.9+n;消光峰2波长〔nm〕入=116.1+n。在消光峰1的折射率灵敏度为157.0nm/RIU,消光峰2的折射率灵敏度为527.7nm/RIU。而单个5nm银球的消光峰波长〔nm〕入=+132.5n。第一个消光峰的折射率灵敏度与单个银纳米颗粒相近,而第二个消光峰由于纳米颗粒之间的耦合作用其灵敏度增大。7结论金属纳米颗粒的LSPR消光现象与纳米颗粒的种类、大小、形状及所处的介质环境有关。本文重点分析了贵金属纳米颗粒LSPR现象与颗粒大小以及颗粒之间的耦合作用的影响。比照分析了金属球与绝缘体球及半导体球的消光光谱以及外表电场分布,验证了LSPR现象产生的原因。通过对不同大小的纳米颗粒的消光、吸收、散射光谱的分析得知,当纳米颗粒半径较小时,消光峰位置波长随颗粒半径变化不大;而当纳米颗粒半径较大时,消光峰位置波长随颗粒半径变化增大;同时随着颗粒半径的增大,散射效率占总的消光效率的比重增加。同样分析了两个纳米颗粒的耦合作用,发现当入射光垂直与轴线,且纳米颗粒之间间距较小时,耦合的作用较大。同样纳米颗粒阵列的消光光谱的灵敏度与纳米颗粒的大小以及间距有关,当颗粒间距很小的时候会出现多峰形式的消光谱。这些规律为我们制作基于纳米颗粒LSPR现象的生物传感器提供了有用的参考依据。参考文献:[1]DavidThompson.MichaelFaraday'sRecognitionofRubyGold:theBirthofModernNanotechnologyReferences[J].GoldBulletin,2007,40(4):267-269.PrashantKJ,IvanHE.Annanoparticlestargetcancer[J].Nanotoday,2002,2:19-29.JeffreyM,McMahon.Goldnanoparticledimerplasmonics:finiteelementmethodcalculationsoftheelectromagneticenhancementtosurface-enhancedRamanspectroscopy[J].AnalBioanalChem,2009,394:1819—1825.MoharamMG,GaylordTK.Rigorouscoupled-waveanalysisofplanar-gratingdiffraction[J].Opt.Soc.Am,1981,71(7):811-818.DraineBT.Thediscrete-dipoleapproximationandItsapplicationtointerstellargraphitegrains[J].TheAstrophysicalJournal,1988,333(22):848~872.YaoHM,LiZ,GongQH.Coupling-inducedexcitationofaforbiddensurfaceplasmonmodeofagoldnanorod.[J].SciChinaSerG-PhysMechAstron,2009,52(8):1129-1138.ZhouFei,LiZhi-Yuan.QuantitativeAnalysisofDipoleandQuadrupoleExcitationintheSurfacePlasmonResonanceofMetalNanoparticles[J].J.Phys.Chem.C,200&112:20233-20240.DeVoeH.Opticalpropertiesofmolecularaggregates.I.Classicalmodelofelectronicabsorptionandrefraction[J].J.Chem.Phys,1964,41,393-400.YangWH,,1995,103:869-875.KellyKL,LazaridesAA,SchatzGC.Computationalelectromaganeticsofmetalnanoparticlesandtheiraggregates[J].Nnaotechnology,2001,12:67-73.DraineBT,FlatauPJ.“UserGuidefortheDiscreteDipoleApproximationCodeDDSCAT(Version7.0)”[EB/OL].:///abs/0809.0337v4,2000.KaneYee.NumericalsolutionofinitialboundaryvalueproblemsinvolvingMaxwell'sequationsinisotropicmedia[J].IEEETransactionsonAntennasandPropagation,1966,14:30-2307.ZhangHai-xi,GuYing,GongQi-huang.Avis
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 度品牌冠名合同范本
- 绿色能源供应与采购合同
- 减肥合同标准文本标准文本
- 买树安全合同标准文本
- 借道行驶合同标准文本
- 农村建房公司合同标准文本
- 产后康复服务规范
- 能源行业合同种类及风险分析
- 企业拼股合同标准文本
- 乡村康养旅游规划
- 地震演练预案中的应急高层建筑疏散策略
- 双相情感障碍护理
- 2024年中国中信集团招聘笔试参考题库含答案解析
- 2024年国家能源集团招聘笔试参考题库含答案解析
- 建筑消防安全中英文对照外文翻译文献
- 2023风电机组基础锚笼环技术规范
- Register and Genre语域与体裁课件
- 带式输送机拆除施工方案
- 《劳动法案例分析》课件
- 2023天地伟业安防产品技术参数和检测报告
- 鬼谷神掌 (静月山人整理)
评论
0/150
提交评论