陈家璧版-光学信息技术原理及应用习题解答(91章)_第1页
陈家璧版-光学信息技术原理及应用习题解答(91章)_第2页
陈家璧版-光学信息技术原理及应用习题解答(91章)_第3页
陈家璧版-光学信息技术原理及应用习题解答(91章)_第4页
陈家璧版-光学信息技术原理及应用习题解答(91章)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九章习题解答9-1.全息象状况。答:在图示的状况下,物的两个端点为A和B点,它们被全息记录在一条线区域上,当白光再现时,这一区域的衍射光是色散AA点的长波长沿AM方向衍射,短波长沿AN方向衍射,B点的长波长沿BN方向衍射,短波长沿BM方向衍射。假设沿APBP方向衍射的波长一样,那么人眼NPP将看到单色红,反之则相反。BP点是某一衍射波长的虚狭缝,A和B它们对应,AMA最短波长的衍Q方向,BMB的最长波长衍射方向。明显,眼睛在M点观看P将能看到B色呈光谱色分布,在图示状况下,上部是紫色,下部是红色。眼睛观看到的象的范围由眼睛离全息图的距离打算,离得越远,观看到的范围越大。9-2.

B用白光点光源再现彩虹全息时,人眼将Q′察到由光谱色组成的单色象。假设用白光线光源作为再现光源,线光源的扩展方向与狭缝方向垂直,这时观看到的是消色差的黑白象,试解释其缘由。时,很多个不同波长的再现象重合在一起,这也就形成了消色差的黑白象。9-3.在一步法彩虹全息记录光路中,物的大小为10cm6.5cm20cm,对物1:130cm,要求人双眼能同时观看完整的象,试计算成像透镜的焦比。解:设透镜L1:1APOQ使MN大于等于双眼间距处。设透镜孔径为D,焦距为f,物体 M aP

d,狭缝距象的距D O′离为L。由图中的几何关系可以得到所以 B

O ABdN

,人眼瞳孔间距为QD=20cm,a=10cm,d=6.5cm,L=30cm代入上式,得到D/f=2.2,这是一个很不切合实际的数据。实际上用一步彩虹全息是不行能获得大观看2f。 L9-4.在用横向面积分割法制作彩颜色虹全息母板的方法中,以下条件:三色光的中心波长分别为645.2nm、526.3nm和444.4nm;第一步记录时被记录物中心位于建在母全息图H 的坐标系的z轴物体距H30cm;其次M M步记录时参考光为平行光,入射角30;白光再现时入射光是入射角为45的平行光,三色再现狭缝位于z轴;设两次记录的波长均为442nm。试据以上条件,确定H 上H、H、和H的位置。假设每个狭缝的光谱带宽为M 1 2 310nm,试确定狭缝宽度。解:x xr (a) (b)图(a)和图(b)是本习题的记录和再现光路。在图(a)中设三个狭缝图象中心的入射角分别是θ

、θ 和θ ,参R G BSR

射角是θ ,图(b)是共轭再现光路,再现光入射角是θ ,图象中心三狭缝的不同色光的衍射光方向一样,cr设SG角为θ 。由光栅方程 OcrzizSB O z sin sin M i c 0

sino

sin ,r得到共轭再现l的θ ,H Ho csino

sinr

sin,c式中λ 和λ分别为记录波长和再现波长,θ 的下标o分别对应于R、G和B。按题中条件及图(a)的坐标系,0 o以λ =442.0nm和λ=444.4nm、526.3nm、645.2代入上式,得到0l=-30cm由于狭缝有确定宽度而引起的带宽可对光栅方程微分得到,即 0

sini

c。o 2 coso由此可得到狭缝宽度9-5.承受图示的双狭缝彩虹全息记录光路第一步,用挡板挡住S,用S对物体O曝光;其次步,用挡板挡住S,用S对物体O曝光。然后将显影的全2 1 1 1 2 2息图用白光照明,人眼在不同位置即可看到不同物体的再现象。画出再现狭缝实象的示意图,说明再现象的特点。解释多狭缝彩虹全息图作多目标存储和假彩色编码的原理。〔以R

9-5RO的共轭光再现全息图,在原狭缝处得到实狭缝,此时在实狭缝处观看,观看到的是赝象,即凹凸与原记录物体相反的象。 S1〔2〕记录多目标时,在透镜处放置多个狭缝,分别对应于不同的物体进展全息记录,再现时用单色光,眼睛S2进展假彩色编码时,将待编码的物体分别置于透镜的物面,在透镜处分别遮挡不同的狭缝,记录在同一张全息图上,再现时用白光再现,不同编码图象按不同颜色重叠在一起,结果形成假彩色图象。9-6.色片,当白光以某一角度再现全息图时,三分色片将分别被三原色再现,呈现彩色图象。试说明其原理,并作相应的三参考光入射角设计计算〔提示:用三棱镜与记录介质用匹配液匹配的方法可以增加参考光入射角;用布喇格条件和光栅方程进展设计,参考第57章体全息局部。关系是式中角度量θ的下标o、r、c、i分别表示记录时的物光、参考光和再现时的再现光、衍射光,它们均是介质内的量,λ和λ分别表示记录光和满足布喇格条件的再现光波长。按题意,θ、θ和λ均由使用条件打算,利1 2 c i 2用上式求出θ和θ,从上式可以求出o r icr 2

sin112

sini

c 。2 在本习题中θ 取207.°〔在记录介质中角度,空气中为22°θ 取°λ 则取三原色波长,利用上式c I 2450nm、530nm和630nm,得到参考光和物光入射角如下表波长λ (nm)2450参考光入射角θr物光入射角θ波长λ (nm)2450参考光入射角θr物光入射角θo202.75°4.95°530226.83°-19.13°630238.96°-31.26°xr把上表的数据折算成空气中的入射角如下表所示〔为在直角三棱镜斜边的入射角,假设物光由散射r际上大散射角的散会照明z二维照片中物光入射角。作全息记录时,在全息干板前分别换三原色掩膜,对应于它们的光路参数作三次曝光。在对全息45°角入射,就能观看到彩色二维照片。λ

(nm)2

450 530 630参考光入射角r物光入射角o

35.14° -2.78° -21.51°7.53° -29.88° -52.07°第十章 习题解答试比较被动三维传感和主动三维传感系统的原理、系统构造、适用范围和优缺点〔思考题〕在三角测量法中通常承受的三种坐标系统如图10.6所示。试推导三种坐标关系中,物体的距离或高度z与测量变量△x之间的关系式,即三角测量法中的测量方程。解答:投影光轴与成像光轴平行。所构成的物三角形和像三角形是相像的直角三角形,测量方程是。式中:bhxz投影光轴和成像光轴相交。θ是投影光轴与成像光轴的夹角,O是两光轴交点并作为物体高度计量的原点,II′是成像系统的入瞳和出瞳,线阵探测器与成像光轴垂直,与I′点的距离为f;当物距l较大时,f近似地等于成像透镜的焦距。由图中所示的几何关系可以导出。(3)投影光轴和成像光轴相交,探测器基线与成像光轴成一倾角β,当满足Scheimpflug条件,即满足关系tgktg 时,待测距离zx(10.16)和(10.17何提高激光三角法测量精度。(10.16)和(10.17)说明,这种不确定性与透镜的数值孔径、激光的波长和散斑的比照度有关。通过增大透镜的数值孔径,减小波长C,降低散斑的比照度可以提高激光三角法测量精度。〔思考题〕位相开放过程,推导二维截断位相函数φw(i,j)开放过程的数学表达式.为基准,沿每一行开放。承受远心光路的PMP10.22所示。设图中=300,’=00,在参考平面上看到的投影正弦光栅是等周期分布的,其周斯P0=5mm,求该系统的等效波长。假设系统对条纹位相的测量精度为2/100,求系统的测量精度。试争论提高系统的测量精度的方法。解答:等效波长e

P/tg=8.7mm0.087mm.减小等效波长0 e

可以提高系统的测量精度。位相测量轮廓术和傅立叶变换轮廓术是基于三角测量原理理上的区分,并比较三种方法的测量精度〔思考题〕飞行时间法(TOF)是基于直接测量激光或其他光源脉冲的飞行时间来确定物风光形的方法。图10.43是承受位相检测技术的TOF系统框图,对时间的测量可以通过对调制光波的位相测量来实现。光束经9MHz的调制器调制后投射到物接收的信号经9MHz的滤波器后与基准信号比较,然后从位相变化计算出距离的变化。假定位相的测量精度为2/100,求系统的测量精度。假设保持位相的测量精度不变,光束的调制频率提高到90MHz,系统的测量精度是多少。0.33m90MHz,系统的测量精度提高到0.03m。第十一章习题试证明任意两个相互统计独立的随机变量之间相关系数为零。答:参阅《统计光学〔根本概念个习题》P21。证明设UVUV的联合概率密度函数可为边缘概率密度函数的乘积:因而U和V的相关函数为依据定义,U和V的协方差则为故相关系数(CUV

/U

)为零。NNN

aejk之和中每一个幅值k

及相位akakN

ak

具有一样的概率分布,数学期望与二阶矩分别为a 和a ;随机位相均布于,区间内。试计算1〕当N趋 k近于无穷大时这N个随机相幅矢量之和的实部和虚部的均值与方差及相关系数〔实部和虚部的联合概

,率密度函数并绘出复平面上等概率密度曲线图。假设随机位相

均布于k

区间内计算结果及函数图象有何变化?答:参阅《统计光学》P42-45及《统计光学〔根本概念个习题》P30-34。解:设和矢量为〔用复数表示,即其实部与虚局部别为依据N个微元矢量的相互独立性可得对于均布与之中的Φ有 22 k所以为了要计算r2

及2,首先计算二阶矩r2i

及i2,式中因而要计算相关函数,还需要计算实部与虚部之间相关函数,其中最终可得出这说明实部与虚部之间仍是不相关的。由于N是个很大的数,由中心极限定理知实部r与虚部i分别为高斯随机变量,即ri不相关,其联合概率密度函数仍为高斯型,可写作1.12ri的联合等概率密度曲线简图,假设图中各椭圆之长短轴分别为an

b,则有n图p (r,i的等概率密度曲线简图RI11.3hx,yP,,试证明全息再现的变形前后两波面散斑场之间的相关因子的表达式〔11.27b〕可以转化为〔11.13〕式中复自相干度的表达形式。证明:变形前后两波面散斑场之间的相关因子的表达式(11.27b)为傅氏反变换,即式中ΔxΔy是d2

(r)的两个重量。当ΔxΔy即d2

(r)为零时,式(11.27b)右边分子变为分母的形式,因而有将上述两式代回相关因子的表达式中〔11.27〕即可转化为11.1〕式中复自相干度的表达形式。ξη)dξdηξη)expjξη)dξdη

dξdη

λz

〔11.13〕在如图11.2的全息干预记录光路中置于物面处的被测物在激振器驱动下垂直于物面进展稳态振动,照明30°。用时间平均法记录下的全息图处理后放到图11.3的全息干预再现光路中,再现参考光与物面之间几何关系与记录光路中完全一样。假设在再现时观看到的两条节线之间正好有五条暗纹,试问稳态振型的振幅最大值是多少?假设记录和再现的光波长为633大值处是第三条暗纹。因此故振幅最大值为分别再现外差全息干预方法中,假设被测物的空间频谱分布在f与f 之间,而且两束参考光均为平面 波,试问参考角〔11.7〕需满足什么条件才能保证外差全息干预图与噪声项完全分别?答:分别再现外差全息干预方法中,复原到全息记录面上的处理好的全息图振幅透过率可表示为再现时用调制频率为 与0 0

的两束光照明全息图,则由全息图射出的光场分布由三局部组成,第一局部一局部直透光场与其次局部光场不重叠就可以了。假设参考角和A(r

)和A(r), h h两束参考光的空间频率可表示为λfsinαλ 和 fsinβλ 第一局部的直透项中对应于A(r

的空间频谱分布在f

f与f

f之间对应于A(r

的空间频谱 h h分布在ff

ff

之间,其他直透项对应着频域的δ函数。其次局部中再现出的原物光场A(r

)的空间频谱,分布在f

与f之间。其次局部中再现出的两个穿插再现光场的空间频谱,则 h h 分布在f

ff

fff

之间和f

ff

ff

f。欲使其次局部中再现出的原物光场和两个穿插再现光场不重叠,则要求欲使其次局部中再现出的原物光场和第一局部中对应于A(r

和A(r

的直透项不重叠,则要求 h h因而需满足相移全息干预技术中,三次相移(t)分别取为 ,,,相应光强测量结果为 I(r i

)I(r

)I(r

,试计算(11-35)式中ri

处的相对初位相Δ(r)。iII答:相对初位相为:Δ(r

。i II 在图11.9的双光楔剪切散斑干预记录光路中,光楔玻璃折射率n为1.5,楔角为0.05°,物距l为0 0500mm633纳米的氦氖激光且入射光与观看方向z为3x,y及ux,y分别为x,yzxz轴旋转180x,y点在两次拍摄的两次曝光剪切散斑干预图中的条纹级数分别为2.53,试问xyzx方向的应变为多大?答:首先用式(11.41

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论