版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴市嘉善县泗洲中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,则方程不能表示的曲线为(
)A
椭圆 B
双曲线 C
抛物线 D
圆参考答案:C2.若命题p:(x-2)(x-3)=0,q:x-2=0,则p是q的(
)A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分也不必要条件参考答案:B3.(5分)函数f(x)的定义域为(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个参考答案:C从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故答案为C.4.等差数列的前三项为,则这个数列的通项公式为(
)A.
B.
C.
D.参考答案:C
略5.数列满足,,则的值是
( )A.-3
B.4
C.1
D.6参考答案:C略6.若椭圆的两个焦点是F1,F2,点P在椭圆上,且PF1⊥F1F2,那么|PF2|=()A.2 B.4 C. D.参考答案:D【考点】椭圆的简单性质.【专题】方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】求得椭圆的a,b,c,由题意可得P的坐标,再由椭圆的定义计算即可得到所求值.【解答】解:椭圆的a=,b=1,c=1,由PF1⊥F1F2,可得yP=﹣1,xP=±=±,即有|PF1|=,由题意的定义可得,|PF2|=2a﹣|PF1|=2﹣=.故选:D.【点评】本题考查椭圆的方程的运用,以及椭圆的定义,考查运算能力,属于基础题.7.(5分)为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如图的2×2列联表.
喜爱打篮球不喜爱打篮球合计男生20525女生101525合计305050则至少有()的把握认为喜爱打篮球与性别有关.附参考公式:K2=P(K2>k0)0.100.050.0250.0100.0050.001k02.7063.8413.0046.6157.78910.828
A.95% B. 99% C. 99.5% D. 99.9%参考答案:C8.“x>0”是“>0”成立的()A.充分非必要条件 B.必要非充分条件C.非充分非必要条件 D.充要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】当x>0时,x2>0,则>0,显然成立,>0,x2>0,时x>0不一定成立,结合充要条件的定义,我们可得“x>0”是“>0”成立的充分非必要条件.【解答】解:当x>0时,x2>0,则>0∴“x>0”是“>0”成立的充分条件;但>0,x2>0,时x>0不一定成立∴“x>0”不是“>0”成立的必要条件;故“x>0”是“>0”成立的充分不必要条件;故选A9.设△ABC的内角A,B,C所对的边分别为a,b,c,若,则△ABC的形状为(
)(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定参考答案:C10.已知a,b均为单位向量,它们的夹角为,则()A.1
B.
C.
D.2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.方程表示焦点在y轴上的椭圆,则实数m的取值范围______________.
参考答案:m<且m≠0
略12.在△ABC中,角A,B均为锐角,则“cosA>sinB”是“△ABC是钝角三角形”的_____条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”)参考答案:充要【分析】利用诱导公式及余弦函数的单调性和充要条件的定义可得答案.【详解】因为,所以,又因为角,均为锐角,所以为锐角,又因为余弦函数在上单调递减,所以,所以中,,所以,所以为钝角三角形,若为钝角三角形,角、均为锐角所以,所以所以,所以,即故是为钝角三角形的充要条件.故答案为:充要【点睛】本题考查诱导公式及余弦函数的单调性及三角形的基本知识,以及充要条件的定义,属中档题.13.在等差数列{an}中,若a3=﹣5,a7=﹣1,则a5的值为.参考答案:-3考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质a3+a7=2a5,进而可得答案.解答:解:由等差数列的性质得:a3+a7=2a5=﹣6,∴a5=﹣3,故答案为:﹣3.点评:本题考查等差数列的性质,熟练掌握等差中项,可以提高做题的效率.属于基础题.14.若x,y∈R+且2x+8y﹣xy=0,则x+y的最小值为.参考答案:18考点:基本不等式.专题:计算题;转化思想.分析:等式2x+8y﹣xy=0变形为+=1,则x+y=(x+y)(+),根据基本不等式即可得到答案.解答:解:由题意2x+8y=xy即:+=1.∵x,y∈R+,利用基本不等式:则x+y=(x+y)(+)=+10≥8+10=18.当且仅当,即x=2y,∵+=1,∴x=12,y=6时等号成立,此时x+y的最小值为18.故答案为18.点评:本题以等式为载体,主要考查基本不等式的应用问题,题中将等式变形,从而利用1的代换是解题的关键,有一定的技巧性,属于基础题目.15.关于下列例题:①两变量x,y之间的线性回归方程y=bx+a的图象必过定点;②函数y=f(x)在点取极值是=0的充分条件;③从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b,组成复数a+bi,其中虚数有25个;④若不等式a≤|x|-|x-1|的解集为空集,则a1;⑤由直线y=x与曲线y=x2围成的封闭图形面积为其中下列的命题的序号是______参考答案:①③④16.已知函数的图象与直线有三个不同的交点,则a的取值范围是
.参考答案:(-2,2)令,得,可得极大值为,极小值为.
17.设直线与双曲线相交于A,B两点,分别过A,B向x轴作垂线,若垂足恰为双曲线的两个焦点,则实数k=__________.参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.参考答案:.解:根据幂函数的定义得:m2-m-5=1,解得m=3或m=-2,当m=3时,f(x)=x2在(0,+∞)上是增函数;当m=-2时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故m=3.略19.某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?参考答案:【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.【专题】计算题;证明题.【分析】(1)依题意易证AC⊥B1D1,AA2⊥B1D1,由线面垂直的判定定理可证直线B1D1⊥平面ACC2A2;(2)需计算上面四棱柱ABCD﹣A2B2C2D2的表面积(除去下底面的面积)S1,四棱台A1B1C1D1﹣ABCD的表面积(除去下底面的面积)S2即可.【解答】解:(1)∵四棱柱ABCD﹣A2B2C2D2的侧面是全等的矩形,∴AA2⊥AB,AA2⊥AD,又AB∩AD=A,∴AA2⊥平面ABCD.连接BD,∵BD?平面ABCD,∴AA2⊥BD,又底面ABCD是正方形,∴AC⊥BD,根据棱台的定义可知,BD与B1D1共面,又平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,∴B1D1∥BD,于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,又AA2∩AC=A,∴B1D1⊥平面ACC2A2;(2)∵四棱柱ABCD﹣A2B2C2D2的底面是正方形,侧面是全等的矩形,∴S1=S四棱柱下底面+S四棱柱侧面=+4AB?AA2=102+4×10×30=1300(cm2)又∵四棱台A1B1C1D1﹣ABCD上下底面均是正方形,侧面是全等的等腰梯形,∴S2=S四棱柱下底面+S四棱台侧面=+4×(AB+A1B1)?h等腰梯形的高=202+4×(10+20)?=1120(cm2),于是该实心零部件的表面积S=S1+S2=1300+1120=2420(cm2),故所需加工处理费0.2S=0.2×2420=484元.【点评】本题考查直线与平面垂直的判定,考查棱柱、棱台的侧面积和表面积,着重考查分析转化与运算能力,属于中档题.20.从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在图中作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数、中位数(保留2位小数);(3)根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?参考答案:【考点】极差、方差与标准差;频率分布直方图.【分析】(1)由已知作出频率分布表,由此能作出作出这些数据的频率分布直方图.(2)由频率分布直方图能求出质量指标值的样本平均数、中位数位.(3)质量指标值不低于95的产品所占比例的估计值.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95的产品至少要占全部产品80%的规定.【解答】解:(1)由已知作出频率分布表为:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228频率0.060.260.380.220.08由频率分布表作出这些数据的频率分布直方图为:(2)质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,∵[75,95)内频率为:0.06+0.26=0.32,∴中位数位于[95,105)内,设中位数为x,则x=95+×10≈99.74,∴中位数为99.74.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95的产品至少要占全部产品80%的规定.21.已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.参考答案:【考点】圆与圆锥曲线的综合;椭圆的标准方程.【分析】(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,由此能求出椭圆的方程.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.【解答】解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x1,y1),D(x2,y2),则而y1?y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泥工承包合同书(2024年版)
- 钢筋供应商与施工方2024年度合同的履行保证3篇
- 二零二四年度个人与个人商铺租赁合同2篇
- 基于二零二四年度的股权转让协议
- 土地流转合同范本2024版
- 苗圃技术创新研发合作合同(2024版)
- 酒的购销合同
- 加油油罐车租赁合同书
- 简单服装加工合同范本
- 教育培训机构合作协议书
- 部编人教版语文四年级上册生字课件 第26课 西门豹治邺
- 夹层钢结构施工方案钢结构夹层施工方案
- 部编版五年级上册语文第六单元习作:我想对您说
- 第23课《范进中举》课件 部编版语文九年级上册
- GB/T 7157-2019电烙铁和热风枪
- GB/T 37546-2019无人值守变电站监控系统技术规范
- GB/T 16453.6-2008水土保持综合治理技术规范崩岗治理技术
- 管理沟通学PPT-沟通概论
- 《政府公共关系》12课件
- 部编道德与法治小学五年级上册《美丽文字-民族瑰宝》优质课件
- 建标-107-2008-乡镇卫生院建设标准(全哥版)
评论
0/150
提交评论