一元一次不等式组应用题(公开课)_第1页
一元一次不等式组应用题(公开课)_第2页
一元一次不等式组应用题(公开课)_第3页
一元一次不等式组应用题(公开课)_第4页
一元一次不等式组应用题(公开课)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天空的幸福是穿一身蓝森林的幸福是披一身绿阳光的幸福是如钻石般耀眼老师的幸福是因为认识了你们愿你们努力进取,永不言败致我亲爱的同学们

9.3一元一次不等式组的应用合作探索小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地。猜猜小宝的体重约有多少千克?分析:从跷跷板的两种状况可以得到不等关系妈妈的体重+小宝的体重

爸爸的体重妈妈的体重+小宝的体重+6千克

爸爸的体重解:设小宝的体重是x千克,则妈妈的体重是2x千克。

由题意得<>2x+x<722x+x+6>72解得:22<x<24例1:3个小组计划在10天内生产500件产品(每天产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务;问:每个小组原先每天生产多少件产品?例题讲解:思路分析1、“不能完成任务”的意思是:2、“提前完成任务”的意思是:按原先的生产速度,10天的产品数量

500提高生产速度后,10天的产品数量

500例13个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1产品,就能提前完成任务.每个小组原先每天生产多少件产品?解:设每个小组原先每天生产x件产品,根据题意,得①②由不等式①得由不等式②得因此,不等式组的解集为根据题意,x的值应是整数,所以x=16答:每个小组原先每天生产16件产品.(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系;

(2)设:设适当的未知数;(3)找:找出题目中的所有不等关系;(4)列:根据不等关系列出不等式组;(5)解:求出这个不等式组的解集;(6)答:写出符合题意的答案。列不等式组解应用题的一般步骤:你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?设

找列解(结果一元一次不等式组二元一次方程组

思考:一个未知数两个未知数找不等关系找等量关系一个范围一组数列不等式组列方程组活学活用练习1、一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页?(答案取整数)解:设张力平均每天读x页7(x+3)>98①7x

<98②解不等式①得x>11解不等式②得x

<14因此,不等式组的解集为11<x<14根据题意得,x的值应是整数,所以

x=12或13答:张力平均每天读12或13页练习2

如果每个学生分3个桃子,那么多8个;如果前面每人分5个,那么最后一个人分到桃子但少于3个.试问有几个学生,几个桃子?设有x个学生,整理得:解得:∵x表示人数(3x+8)(3x+8)-5(x-1)

<32x<132x>10x<6.5x>5即:5<x<6.5∴3x+8=解:答:共有6个学生,26个桃子。如果每个学生分3个桃子,那么多8个;如果前面每人分5个,那么最后一个人得到桃子但少于3个.试问有几个学生,几个桃子?则有(3x+8)个桃子.5(x-1)>0-∴x取正整数∴x=626练习3

某班有若干学生住宿,若每间住4人,则有20人没宿舍住;若每间住8人则有一间没有住满人,试求该班宿舍间数及住宿人数?分析:可设有x间宿舍,则有

个学生。有

间住了8人,住了

人。最后一间为

人.解:设有x间宿舍,则有4x+20人住宿,依题意可得(4x+20)-8(x-1)>0(4x+20)-8(x-1)<8x<7x>5解得因为宿舍间数是整数所以x=6;4x+20=44答:该班有6间宿舍及44人住宿。(4x+20)(x-1)8(x-1)(4x+20)-8(x-1)因此,不等式组的解集为

5<x<7

(2006.湖南).接待一世博旅行团有290名游客,共有100件行李。计划租用甲,乙两种型号的汽车共8辆。甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。(1)设租用甲种汽车辆,请你帮助设计可能的租车方案;(2)如果甲,乙两种汽车每辆的租车费用分别为2000元,1800元,你会选择哪种租车方案。接待一世博旅行团有290名游客,共有100件行李。计划租用甲,乙两种型号的汽车共8辆。甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。

(1)设租用甲种汽车辆,请你帮助设计可能的租车方案;

(2)如果甲,乙两种汽车每辆的租车费用分别为2000元,1800元,你会选择哪种租车方案。

甲汽车载人数+乙汽车载人数

290甲汽车载行李件数+乙汽车载行李件数

100即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆。(2)第一种租车方案的费用为5×2000+3×1800=15400元第二种租车方案的费用为6×2000+2×1800=15600元∴选择第一种租车方案分析:解得:5≤≤6

40+30(8—)≥29010+20(8—)≥100因为为整数,所以=5,68—8290100401030(8—)20(8—)甲乙总共车辆数车载人数车载行李件数≥

≥应用一元一次不等式组解决实际问题的一般思路:实际问题不等关系不等式不等式组结合实际因素找出列出组成求解解决归纳作业:习题9.3第4、5题

思考题.把价格为20元/千克的甲种糖果8千克和价格为18元/千克的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最少是多少?解:设所混合的乙种糖果有xkg.根据题意,得解得答:乙种糖果最少7千克.(09广东):

1、某工人在生产中,经过第一次改进技术,每天所做的零件的个数比原来多10个,因而他在8天内做完的零件就超过200个,后来,又经过第二次技术的改进,每天又多做37个零件,这样他只做4天,所做的零件的个数就超过前8天的个数,问这位工人原先每天可做零件多少个?思路点拨:解题时注意抓住题设中的关键字眼,“超过”、“多”。本题的关键是第二次改进后4天所做的个数就超过前8天的个数.设这个工人原先每天做x个零件,则根据题意得

(10上海)某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴。该地某农户在改善的10个1亩大小的水池里分别养殖甲鱼和黄鳝,因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如表2所示(收益=毛利润-成本+政府津贴):(1)根据以上信息,该农户可以怎样安排养殖?(2)应怎样安排养殖,可获得最大收益?养殖种类成本(万元/亩)毛利润(万元/亩)政府补贴(万元/亩)甲鱼1.52.50.2黄鳝11.80.1(1)分析:解答此题的关键是明确等量关系与不等关系,根据等量关系设未知数,根据不等关系列不等式.

等量关系:甲鱼的亩数+黄鳝的亩数=10亩不等关系:⑴甲鱼的成本+黄鳝的成本≤14万元⑵甲鱼的收益+黄鳝的收益≥10.8万元解:设养甲鱼的亩数为x亩,则养黄鳝的亩数为(10-x)亩,由表格可以看出:养甲鱼的收益为2.5-1.5+0.2=1.2(万元/亩)养黄鳝的收益为1.8-1+0.1=0.9(万元/亩)根据题意得:1.5x+10-x≤14,1.2x+0.9(10-x)≥10.8解得6≤x≤8所以该农户可以这样安排养殖:养甲鱼6亩,黄鳝4亩;或养甲鱼7亩,黄鳝3亩;或养甲鱼8亩,黄鳝2亩{养殖种类成本(万元/亩)毛利润(万元/亩)政府补贴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论