版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若(3x-1x)A.-5B.5C.-405D.4052.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.(y≠0)3.在中,,则的形状为()A.正三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形4.已知是四个互不相等的正数,满足且,则下列选项正确的是()A. B.C. D.5.执行如图所示的程序框图,若输出的结果为,则输入的正整数a的可能取值的集合是(
)A. B.C. D.6.将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为()A.18B.24C.30D.367.展开式中项的系数是A.4 B.5C.8 D.128.若复数满足,其中为虚数单位,则()A. B. C. D.9.与终边相同的角可以表示为A. B.C. D.10.我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示.由表中数据可得各类岗位的薪资水平高低情况为A.数据挖掘>数据开发>数据产品>数据分析 B.数据挖掘>数据产品>数据开发>数据分析C.数据挖掘>数据开发>数据分析>数据产品 D.数据挖掘>数据产品>数据分析>数据开发11.根据如下样本数据得到的回归方程为,则
3
4
5
6
7
8
A., B., C., D.,12.中国古典数学有完整的理论体系,其代表我作有《周髀算经》《九章算术》《孙子算经》《数书九章》等,有5位年轻人计划阅读这4本古典数学著作,要求每部古典数学著作至少有1人阅读,则不同的阅读方案的总数是()A.480 B.240 C.180 D.120二、填空题:本题共4小题,每小题5分,共20分。13.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知射线θ=与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为________.14.以下个命题中,所有正确命题的序号是______.①已知复数,则;②若,则③一支运动队有男运动员人,女运动员人,用分层抽样的方法从全体运动员中抽取一个容量为的样本,则样本中男运动员有人;④若离散型随机变量的方差为,则.15.如果,且为第四象限角,那么的值是____.16.若幂函数的图像经过点,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别为.已知.(1)若,,求的面积;(2)求的取值范围.18.(12分)已知点是椭圆的一个焦点,点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于不同的两点,且(为坐标原点),求直线斜率的取值范围.19.(12分)平面直角坐标系中,直线的参数方程为,(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的极坐标方程与曲线的直角坐标方程;(2)已知与直线平行的直线过点,且与曲线交于两点,试求.20.(12分)已知函数,其中a为实数.(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若,判断函数f(x)在[1,2]上的单调性,并说明理由.21.(12分)在数列an中,a(1)求a2(2)猜想an22.(10分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为:(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于,两点.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点的极坐标为,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设可得2n=32⇒n=5,则通项公式Tr+1=C5r2、D【解析】所以定点的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,选D.3、B【解析】
利用二倍角公式代入cos2=求得cosB=,进而利用余弦定理化简整理求得a2+b2=c2,根据勾股定理判断出三角形为直角三角形.【详解】因为,,所以,有.整理得,故,的形状为直角三角形.故选:B.【点睛】余弦的二倍角公式有三个,要根据不同的化简需要进行选取..在判断三角形形状的方法中,一般有,利用正余弦定理边化角,角化边,寻找关系即可4、D【解析】
采用特殊值法,结合已知条件,逐项判断,即可求得答案.【详解】A.取、、、,则它们满足且,但是:,,,故此时有,选项A错误;B.取、、、,则它们满足且,但是:,,故此时有,选项B错误;C.取、、、,,,,,,故此时有,选项C错误.综上所述,只有D符合题意故选:D.【点睛】本题解题关键是掌握不等式的基础知识和灵活使用特殊值法,考查了分析能力和计算能力,属于基础题.5、A【解析】由题意,循环依次为,,所以可能取值的集合为,故选A.6、C【解析】解:由题意知4个小球有2个放在一个盒子里的种数是C4把这两个作为一个元素同另外两个元素在三个位置排列,有A3而红球和蓝球恰好放在同一个盒子里有A3∴编号为红球和蓝球不放到同一个盒子里的种数是C427、B【解析】
把(1+x)5按照二项式定理展开,可得(1﹣x)(1+x)5展开式中x2项的系数.【详解】(1﹣x)(1+x)5=(1﹣x)(1+5x+10x2+10x3+5x4+x5),其中可以出现的有1*10x2和﹣x*5x,其它的项相乘不能出现平方项,故展开式中x2项的系数是10﹣5=5,故选B.【点睛】这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.8、A【解析】
由,得,则,故选A.9、C【解析】
将变形为的形式即可选出答案.【详解】因为,所以与终边相同的角可以表示为,故选C.【点睛】本题考查了与一个角终边相同的角的表示方法,属于基础题.10、B【解析】
根据表格中的数据计算出各类岗位的平均薪资,比较大小后得出结论。【详解】由表格中的数据可知,数据开发岗位的平均薪资为(万元),数据分析岗位的平均薪资为(万元),数据挖掘岗位的平均薪资为(万元),数据产品岗位的平均薪资为(万元)。故选:B。【点睛】本题考查样本数据的平均数,熟练利用平均数公式计算样本数据的平均数,是解本题的关键,考查计算能力与数据分析能力,属于中等题。11、B【解析】
试题分析:由表格数据的变化情况可知回归直线斜率为负数,中心点为,代入回归方程可知考点:回归方程12、B【解析】分析:先根据条件确定有且仅有一本书是两人阅读,再根据先选后排求排列数.详解:先从5位年轻人中选2人,再进行全排列,所以不同的阅读方案的总数是选B.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
化极坐标方程为直角坐标方程,参数方程为普通方程,联立可求线段AB的中点的直角坐标.【详解】射线θ=的直角坐标方程为y=x(x≥0),曲线(t为参数)化为普通方程为y=(x﹣2)2,联立方程并消元可得x2﹣5x+4=0,∴方程的两个根分别为1,4∴线段AB的中点的横坐标为,纵坐标为∴线段AB的中点的直角坐标为故答案为:【点睛】本题考查化极坐标方程为直角坐标方程,参数方程为普通方程,考查直线与抛物线的交点,中点坐标公式,属于基础题.14、①③④【解析】
根据复数的模的运算可知,①正确;代入,,所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确.【详解】①,则,①正确;②令,则;令,则,②错误;③抽样比为:,则男运动员应抽取:人,③正确;④由方差的性质可知:,④正确.本题正确结果:①③④【点睛】本题考查命题的真假性的判断,涉及到复数模长运算、二项式系数和、分层抽样、方差的性质等知识,属于中档题.15、【解析】
利用先求得,再利用求解即可,注意利用角的范围确定三角函数值的符号.【详解】由题,因为,且,则或,因为为第四象限角,所以,则,所以,故答案为:【点睛】本题考查利用同角的三角函数关系求三角函数值,属于基础题.16、【解析】
设出幂函数,代入点计算函数表达式,将代入得到答案.【详解】设:,图像经过点,即故答案为【点睛】本题考查了幂函数的计算,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据正弦定理和利用,得到,最后求面积;(2)由已知可得,所以,转化为三角函数恒等变形,得到,根据角的范围求函数的取值范围.【详解】解:(1)在中,∵,∴,∵,,由正弦定理得:,∴,∴,,∴.(2).∵,∴.∴,则.【点睛】本题考查了利用正余弦定理解三角形,和三角恒等变换求函数的最值,第一问也可利用余弦定理求边,利用求面积.18、(1)(2)【解析】
(1)由题可知,椭圆的另一个焦点为,利用椭圆的定义,求得,再理由椭圆中,求得的值,即可得到椭圆的方程;(2)设直线的方程为,联立方程组,利用根与系数的关系,求得,在由,进而可求解斜率的取值范围,得到答案。【详解】(1)由题可知,椭圆的另一个焦点为,所以点到两焦点的距离之和为.所以.又因为,所以,则椭圆的方程为.(2)当直线的斜率不存在时,结合椭圆的对称性可知,,不符合题意.故设直线的方程为,,,联立,可得.所以而,由,可得.所以,又因为,所以.综上,.【点睛】本题主要考查椭圆的定义及标准方程、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等。19、(1)直线的极坐标方程为,曲线的直角坐标方程为.(2).【解析】试题分析:(1)先利用加减消元法将直线的参数方程化为直角坐标方程,再利用,得直线的极坐标方程,最后根据,将曲线的极坐标方程化为直角坐标方程,(2)先根据点斜式写出直线方程,与抛物线方程联立,利用韦达定理以及弦长公式求.试题解析:(1)将,代入直线方程得,由可得,曲线的直角坐标方程为.(2)直线的倾斜角为,∴直线的倾斜角也为,又直线过点,∴直线的参数方程为(为参数),将其代入曲线的直角坐标方程可得,设点对应的参数分别为.由一元二次方程的根与系数的关系知,,∴.20、(1)时奇函数,时非奇非偶函数;(2)单调递增,证明见解析.【解析】
(1)讨论两种情况,分别利用奇偶性的定义判断即可;(2)设,再作差,通分合并,最后根据自变量范围确定各因子符号,得差的符号,结合单调性定义作出判断即可.【详解】(1)当时,,显然是奇函数;当时,,,且,所以此时是非奇非偶函数.(2)设,则因为,所以,,,所以,,所以,所以,即,故函数在上单调递增.【点睛】本题主要考查函数的奇偶性以及函数的单调性,属于中档题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数21、(1)4,9,16;(2)an【解析】
(1)根据数列递推关系,把n=1,2,3分别代入,求出a2(2)先假设n=k时,ak=k【详解】(1)∵a1=1,∴a2故a2,a(2)由(1)猜想an①当n=1时,a1②设n=k时,猜想成立,即ak则当n=k+1时,ak+1即当n=k+1时猜想也成立,由①②可知,猜想成立,即an【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22、(1)直线的普通方程为,曲线的直角坐标方程为;(2).【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汕尾道路客运输从业资格证理论考试题
- 2024年高速公路劳务分包合同范本
- 2024年兰州客运资格证应用能力试题答案
- 2024年公司之间借款合同范文
- 2024年送餐合同范本
- 2024年劳务用工合同书范本
- 2019年江苏宿迁中考满分作文《我给成长留下的》
- 2024年施工劳动合同范本
- 2024年合伙协议合同
- 2024年居民房租赁合同
- 2023福建中考《韧战》语文作文(10篇)
- 行政约谈的法律规制
- 机械格栅图纸
- 开发商与前期物业服务合同
- 公路安全防护工程交通安全设施施工组织设计
- (完整版)血压监测记录表
- 2.8《食物在身体里的旅行》优质课件
- 师德及思想政治表现 教师政治思想师德表现【3篇】
- 苏教版选修2《空间向量基本定理》教案及教学反思
- 造价课件八工业管道
- 同济大学(高等数学)-第三篇-常微分方程
评论
0/150
提交评论