版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.3函数的奇偶性第三章2021内容索引0102课前篇自主预习课堂篇探究学习课标阐释1.结合具体函数,了解函数的奇偶性的含义.(逻辑推理)2.能根据奇偶性的定义判断和证明函数的奇偶性.(逻辑推理)3.能利用奇偶性来研究函数的定义域、值域、解析式、单调性及函数的图像等.(数学运算)思维脉络课前篇自主预习【激趣诱思】在我们的日常生活中,可以观察到许多对称现象,如图,六角形的雪花晶体、建筑物和它在水中的倒影……上述材料中哪个图形是轴对称图形?哪个图形是中心对称图形?【知识点拨】
知识点一、奇偶函数的定义一般地,设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,名师点析
对函数奇偶性定义的理解(1)函数的奇偶性是相对于定义域D内的任意一个x而言的,而函数的单调性是相对于定义域内的某个子集而言的,从这个意义上讲,函数的单调性属于“局部性质”,而函数的奇偶性则属于“整体性质”.(2)奇函数和偶函数的定义域在数轴上关于原点对称.微练习下列函数中,既是奇函数又是减函数的为(
)A.y=x-1
B.y=3x2C.y=
D.y=-x|x|答案
D知识点二、奇偶函数的图像特征(1)偶函数的图像关于
y轴
对称;反之,结论也成立,即图像关于y轴对称的函数一定是偶函数.(2)奇函数的图像关于原点对称;反之,结论也成立,即图像关于原点对称的函数一定是奇函数.名师点析
奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反;若奇函数f(x)在区间[a,b](0<a<b)上有最大值M,最小值m,则f(x)在区间[-b,-a]上的最大值为-m,最小值为-M;偶函数f(x)在区间[a,b],[-b,-a](0<a<b)上有相同的最大(小)值.微思考
(1)如果f(x)的图像关于原点对称,且函数在x=0处有定义,那么f(0)为何值?提示
f(x)的图像关于原点对称,即f(x)为奇函数,故满足f(-x)=-f(x).因为f(x)在x=0处有定义,所以f(0)=-f(0),即f(0)=0.(2)若f(x)为奇函数,且点(x,f(x))在其图像上,则哪一个点一定在其图像上?若f(x)为偶函数呢?提示
若f(x)为奇函数,则点(-x,-f(x))一定在其图像上;若f(x)为偶函数,则点(-x,f(x))一定在其图像上.课堂篇探究学习探究一判断函数的奇偶性分析先求定义域,验证定义域是否关于原点对称,再看f(-x)与f(x)的关系,进而做出判断.(3)函数的定义域为[-1,1],关于原点对称.∵f(-x)=(-x)2-2|-x|+1=x2-2|x|+1=f(x),∴f(x)是偶函数.反思感悟
如何判断函数的奇偶性1.判断函数的奇偶性一般不用其定义,而是利用定义的等价形式,即考察f(-x)与f(x)的关系,具体步骤如下:(1)求f(x)的定义域;(2)若定义域不关于原点对称,则函数f(x)不具有奇偶性,若定义域关于原点对称,可再利用定义验证f(-x)与f(x)的关系.2.对于一些较复杂的函数,也可以用如下性质判断函数的奇偶性:(1)偶函数的和、差、积、商(分母不为零)仍为偶函数;(2)奇函数的和、差仍为奇函数;(3)奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;(4)一个奇函数与一个偶函数的积为奇函数.变式训练
1下列函数是偶函数的为(
)A.y=2|x|-1,x∈[-1,2]B.y=x3-x2C.y=x3D.y=x2,x∈[-1,0)∪(0,1]答案
D解析
选项A中,函数的定义域不关于原点对称,则函数不是偶函数;选项B中,f(-x)≠f(x),函数不是偶函数;选项C中,f(-x)=-x3=-f(x),函数是奇函数;选项D中,f(-x)=x2=f(x),且定义域也关于原点对称,所以函数是偶函数.探究二由函数的奇偶性求函数的解析式例2已知f(x)是定义域为R的奇函数,且当x>0时,f(x)=x|x-2|,求当x<0时,f(x)的表达式.分析已知函数f(x)是奇函数,可利用对称性求对称区间上的解析式.解
令x<0,则-x>0.∴f(-x)=-x|-x-2|=-x|x+2|.∵f(x)为奇函数,∴f(-x)=-f(x).∴f(x)=x|x+2|.故当x<0时,f(x)的表达式为f(x)=x|x+2|.反思感悟
由函数奇偶性求函数解析式的解题策略1.函数具有奇偶性,若只给出了部分区间上的解析式,则可以利用函数的奇偶性求出对称区间上的解析式,其解题理论为函数奇偶性的定义.正用定义可以判断函数的奇偶性,逆用可以求出函数在对称区间上的解析式.2.结论:(1)若f(x)是奇函数,且已知x>0时的解析式,则x<0时的解析式只需将原函数式y=f(x)中的x,y分别替换为-x,-y,然后解出y即可.(2)若f(x)是偶函数,且已知x>0时的解析式,则x<0时的解析式只需将原函数式y=f(x)中的x替换为-x,y不变,即得x<0时的解析式.延伸探究若本例题中题干不变,如何求当x≤0时,f(x)的表达式?解
只需将f(0)单独求出.因为f(x)是奇函数,且在x=0处有定义,所以f(0)=0.又因为f(x)=x|x+2|,x<0,所以f(x)=x|x+2|,x≤0.探究三奇、偶函数图像的应用例3若函数f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,若f(2)=0,则使f(x)<0的x的取值范围是(
)A.(-∞,2) B.(-2,2)C.(-∞,-2)∪(2,+∞) D.(2,+∞)答案
C解析
由偶函数f(x)在(-∞,0]上为增函数,且f(2)=0,可知函数f(x)在[0,+∞)上为减函数,且f(-2)=f(2)=0.于是可得出如图的草图.由图可知使f(x)<0的x的取值范围是(-∞,-2)∪(2,+∞),故选C.反思感悟
函数奇偶性的应用1.研究函数图像时,要注意对函数性质的研究,这样可避免作图的盲目性和复杂性.2.利用函数的奇偶性作图,其依据是奇函数图像关于原点对称,偶函数图像关于y轴对称.因此在研究这类函数的性质(或图像)时,可通过研究函数在y轴一侧的性质(或图像),便可推断出函数在整个定义域上的性质(或图像).变式训练
2奇函数f(x)的定义域为[-5,5],它在y轴右侧的图像如图所示,则f(x)<0的x的取值集合为
.
答案
{x|-2<x<0或2<x<5}解析
奇函数f(x)在[-5,5]上的图像如图所示,由图像可知,x∈(2,5)时,f(x)<0;x∈(0,2)时,f(x)>0.因为其图像关于原点对称,所以x∈(-5,-2)时,f(x)>0;x∈(-2,0)时,f(x)<0,所以使f(x)<0的x的取值集合为{x|-2<x<0或2<x<5}.
素养形成利用函数的单调性与奇偶性解不等式典例
设定义在[-2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m),求实数m的取值范围.方法点睛
利用函数奇偶性和单调性解不等式解决此类问题时一定要充分利用已知的条件,把已知不等式转化成f(x1)>f(x2)或f(x1)<f(x2)的形式,再根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,列出不等式(组),同时不能漏掉函数自身定义域对参数的影响.
当堂检测1.下列函数中是奇函数的为(
)A.y=x3-x2 B.y=|x-1|C.y=-3x3+x D.y=答案
C2.有下列说法:①偶函数的图像一定与y轴相交;②若y=f(x)是奇函数,则由f(-x)=-f(x)可知f(0)=0;③既是奇函数也是偶函数的函数一定是f(x)=0,x∈R;④若一个图形关于y轴成轴对称,则该图形一定是偶函数的图像.其中不正确的是(
)A.①②
B.①④C.①②④ D.①②③④答案
D解析
①中可举反例f(x)=x2+2,x∈(-∞,-2)∪(2,+∞);②中f(x)在x=0处可能无定义;③中也可以是f(x)=0,x∈A(A为关于原点对称的数集);④中该图形可能不是函数的图像.故①②③④均错误.3.已知函数f(x)是定义在R上的偶函数,当x∈(-∞,0)时,f(x)=x-x4;当x∈(0,+∞)时,f(x)=
.
答案
-x-x4解析
(方法一)由于是填空题,故可采用直接代换法,将x用-x代替,即答案为-x-x4.(方法二)设x∈(0,+∞),则-x∈(-∞,0),则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备类货物运输合同
- 私家车租车合同范本
- 木门购买安装合同范本
- 会展服务协议合同正规范本
- 《教师嗓音保健》课件
- 企业人员借调合同
- 建筑工程施工总承包合同补充协议
- 光之教堂调研报告
- 基于非铅钙钛矿单晶的高性能X射线探测器研究
- 基于双氰基新型荧光染料生物硫醇荧光探针的构建及其性能研究
- 教育环境分析报告
- 人力资源服务公司章程
- (正式版)CB∕T 4552-2024 船舶行业企业安全生产文件编制和管理规定
- 病案管理质量控制指标检查要点
- 2024年西藏中考物理模拟试题及参考答案
- 九型人格与领导力讲义
- 人教版五年级上册数学脱式计算练习200题及答案
- 廉洁应征承诺书
- 卵巢黄体囊肿破裂教学查房
- 医院定岗定编
- 2023年大学物理化学实验报告化学电池温度系数的测定
评论
0/150
提交评论